4 research outputs found

    Understanding the microbial biogeography of ancient human dentitions to guide study design and interpretation

    No full text
    The oral cavity is a heterogeneous environment, varying in factors such as pH, oxygen levels, and salivary flow. These factors affect the microbial community composition and distribution of species in dental plaque, but it is not known how well these patterns are reflected in archaeological dental calculus. In most archaeological studies, a single sample of dental calculus is studied per individual and is assumed to represent the entire oral cavity. However, it is not known if this sampling strategy introduces biases into studies of the ancient oral microbiome. Here, we present the results of a shotgun metagenomic study of a dense sampling of dental calculus from four Chalcolithic individuals from the southeast Iberian peninsula (ca. 4500–5000 BP). Interindividual differences in microbial composition are found to be much larger than intraindividual differences, indicating that a single sample can indeed represent an individual in most cases. However, there are minor spatial patterns in species distribution within the oral cavity that should be taken into account when designing a study or interpreting results. Finally, we show that plant DNA identified in the samples is likely of postmortem origin, demonstrating the importance of including environmental controls or additional lines of biomolecular evidence in dietary interpretations.Horizon 2020(H2020)StG- 677576Bioarchaeolog

    Understanding the microbial biogeography of ancient human dentitions to guide study design and interpretation

    Get PDF
    The oral cavity is a heterogeneous environment, varying in factors such as pH, oxygen levels, and salivary flow. These factors affect the microbial community composition and distribution of species in dental plaque, but it is not known how well these patterns are reflected in archaeological dental calculus. In most archaeological studies, a single sample of dental calculus is studied per individual and is assumed to represent the entire oral cavity. However, it is not known if this sampling strategy introduces biases into studies of the ancient oral microbiome. Here, we present the results of a shotgun metagenomic study of a dense sampling of dental calculus from four Chalcolithic individuals from the southeast Iberian peninsula (ca. 4500–5000 BP). Interindividual differences in microbial composition are found to be much larger than intraindividual differences, indicating that a single sample can indeed represent an individual in most cases. However, there are minor spatial patterns in species distribution within the oral cavity that should be taken into account when designing a study or interpreting results. Finally, we show that plant DNA identified in the samples is likely of postmortem origin, demonstrating the importance of including environmental controls or additional lines of biomolecular evidence in dietary interpretations.Horizon 2020(H2020)StG- 677576Bioarchaeolog

    The efficacy of whole human genome capture on ancient dental calculus and dentin

    Get PDF
    Objectives: Dental calculus is among the richest known sources of ancient DNA in the archaeological record. Although most DNA within calculus is microbial, it has been shown to contain sufficient human DNA for the targeted retrieval of whole mitochondrial genomes. Here, we explore whether calculus is also a viable substrate for whole human genome recovery using targeted enrichment techniques. Materials and methods: Total DNA extracted from 24 paired archaeological human dentin and calculus samples was subjected to whole human genome enrichment using in-solution hybridization capture and high-throughput sequencing. Results: Total DNA from calculus exceeded that of dentin in all cases, and although the proportion of human DNA was generally lower in calculus, the absolute human DNA content of calculus and dentin was not significantly different. Whole genome enrichment resulted in up to four-fold enrichment of the human endogenous DNA content for both dentin and dental calculus libraries, albeit with some loss in complexity. Recovering more on-target reads for the same sequencing effort generally improved the quality of downstream analyses, such as sex and ancestry estimation. For nonhuman DNA, comparison of phylum-level microbial community structure revealed few differences between precapture and postcapture libraries, indicating that off-target sequences in human genome-enriched calculus libraries may still be useful for oral microbiome reconstruction. Discussion: While ancient human dental calculus does contain endogenous human DNA sequences, their relative proportion is low when compared with other skeletal tissues. Whole genome enrichment can help increase the proportion of recovered human reads, but in this instance enrichment efficiency was relatively low when compared with other forms of capture. We conclude that further optimization is necessary before the method can be routinely applied to archaeological samples
    corecore