128 research outputs found

    Effect of surface conditioning methods on the bond strength of luting cement to ceramics

    Get PDF
    Objectives. This study evaluated the effect of three different surface conditioning methods on the bond strength of a Bis-GMA based luting cement to six commercial dental ceramics. Methods. Six disc shaped ceramic specimens (glass ceramics, glass infiltrated alumina, glass infiltrated zirconium dioxide reinforced alumina) were used for each test group yielding a total number of 216 specimens. The specimens in each group were randomly assigned to one of the each following treatment conditions: (1) hydrofluoric acid etching, (2) airborne particle abrasion, (3) tribochemical silica coating. The resin composite luting cement was bonded to the conditioned and silanized ceramics using polyethylene molds. All specimens were tested at dry and thermocycled (6.000, 5-55degreesC, 30 s) conditions. The shear bond strength of luting cement to ceramics was measured in a universal testing machine (2 mm/min). Results. In dry conditions, acid etched glass ceramics exhibited significantly higher results (26.4-29.4 MPa) than those of glass infiltrated alumina ceramics (5.3-18.1 MPa) or zirconium dioxide (8.1 MPa) (ANOVA, P <0.001). Silica coating with silanization increased the bond strength significantly for high-alumina ceramics (8.5-21.8 MPa) and glass infiltrated zirconium dioxide ceramic (17.4 MPa) compared to that of airborne particle abrasion (ANOVA, P <0.001). Thermocycling decreased the bond strengths significantly after all of the conditioning methods tested. Significance. Bond strengths of the luting cement tested on the dental ceramics following surface conditioning methods varied in accordance with the ceramic types. Hydrofluoric acid gel was effective mostly on the ceramics having glassy matrix in their structures. Roughening the ceramic surfaces with air particle abrasion provided higher bond strengths for high-alumina ceramics and the values increased more significantly after silica coating/silanization. 2003 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved

    The fit of tapered posts in root canals luted with zinc phosphate cement:A histological study

    Get PDF
    Objectives. Stress transmission to the root through passive fitting dental posts is partly influenced by the thickness of the cement layer between the post and the prepared root canal surface as well as the fit of the post in the root canal. The objective of this study was to compare the cement gap between the post surfaces and the root canals using five prefabricated, tapered, unthreaded titanium posts of different manufacturers, without and with cement. Methods. Following the endodontic treatment with hand instruments of 100 intact anterior teeth, post spaces were prepared using opening drills of the corresponding size of post. Fifty posts were cemented with zinc phosphate cement into the roots for each system while another 50 posts were inserted into the canal without using the cement. After histological sectioning, the cement gap was measured at six sites for three times at the coronal, middle and apical regions between the root canal wall and the post surface under a light microscope before and after cementation. Results. Before cementation, the highest overall cement gap was observed with the Dr Mooser post system (R) (46 mu m) and the lowest with the Velva post system (R) and Cylindro-Conical system (R) (30 mu m). Significantly less (P <0.05) mean cement gap was observed with respect to the Erlangen post system (R) (41 mu m), the Dr Mooser post system (R) (48 mu m), the MP Pirec post system (R) (34 mu m) and Velva post system (R) (33 pm) when compared with the Cylindro-Conical system (R) (62 tm). The Cylindro-Conical system (R) (79, 61 gm) and MP Pirec post system (R) (25, 24 tm) demonstrated no significant difference (P > 0.001) compared with Velva-Post (R) (38, 20 mu m) at the coronal and middle part, respectively (Mann-Whitney U-test, Boneferroni correction). Significant differences (P <0.001) were observed between the cement gap at the coronal and apical part for the Cylindro-Conical system (R) (79, 46 mu m), Dr Mooser post system (R) (45, 56 mu m) and MP Pirec post system (R) (25, 52 mu m). After cementation, the highest cement gap at the coronal part was obtained with the Cylindro-Conical system (R) (79 +/- 21 mu m) and the lowest with the MP Pirec post system (R) (25 +/- 9 mu m). However, at the apical end, the MP Pirec post system (R) (52 +/- 89 gm) and Dr Mooser post system (R) (56 +/- 16 gm) revealed the highest gap. Significance. Form-congruence between the preparation drill and the post systems exhibited differences. The most consistent cement gap either at the coronal, middle or apical parts of the root canals was obtained with the Erlangen post system (R). (c) 2005 Academy of Dental Materials. Published by Elsevier Ltd. All. rights reserve

    Evaluation of spatial and functional roughness parameters on air-abraded zirconia as a function of particle type and deposition pressure

    Get PDF
    Purpose: This study evaluated the spatial and functional roughness parameters on air-abraded zirconia as a function of particle type and deposition pressure. Materials and Methods: Polished zirconia blocks (Cercon, Degussa/Dentsply) (N=30) with dimensions of 5 × 4 × 4 mm3 were air abraded according to 2 factors: a) particle type – 30-μm silica-coated alumina (CoJet) or alumina particles (45 μm); b) deposition pressure (1.5, 2.5 and 4.5 bar). Roughness parameters (Sdr, Vi, Sci and Svi) were measured in an optical profilometer (Wyko NT 1100) at the center of the air-abraded area (301.3 × 229.2 μm). Two measurements were made for each parameter from each surface. The means of each group were analyzed by 2-way ANOVA followed by Tukey’s adjustment test and Student’s t-test (alpha = 0.05). Results: Both the particle type (p 0.05) in these parameters for either particle type. Conclusion: Considering roughness parameters for micromechanical retention and parameters for adsorption mechanisms of adhesion, zirconia surfaces presented better morphological features when air abraded with silica-coated alumina than alumina particles at pressures higher than 1.5 bar. Particle deposition at 2.5 bar may be preferable to 4.5 bar pressure for avoiding possible deposition-related damage on zirconia, as there were no significant differences for the functional parameters

    Gastric intramucosal pH is stable during titration of positive end-expiratory pressure to improve oxygenation in acute respiratory distress syndrome

    Get PDF
    BACKGROUND: Optimal positive end-expiratory pressure (PEEP) is an important component of adequate mechanical ventilation in acute lung injury and acute respiratory distress syndrome (ARDS). In the present study we tested the effect on gastric intramucosal pH of incremental increases in PEEP level (i.e. PEEP titration) to improve oxygenation in ARDS. Seventeen consecutive patients with ARDS, as defined by consensus criteria, were included in this clinical, prospective study. All patients were haemodynamically stable, and were not receiving vasopressors. From an initial level of 5 cmH(2)O, PEEP was titrated at 2 cmH(2)O increments until the partial arterial oxygen tension was 300 mmHg or greater, peak airway pressure was 45 cmH(2)O or greater, or mean arterial blood pressure decreased by 20% or more of the baseline value. Optimal PEEP was defined as the level of PEEP that achieved the best oxygenation. The maximum PEEP was the highest PEEP level reached during titration in each patient. RESULTS: Gastric mucosal pH was measured using gastric tonometry at all levels of PEEP. The thermodilution technique was used for measurement of cardiac index. Gastric mucosal pH was similar at baseline and at optimal PEEP levels, but it was slightly reduced at maximum PEEP. Cardiac index and oxygen delivery remained stable at all PEEP levels. CONCLUSION: Incremental titration of PEEP based on improvement in oxygenation does not decrease gastric intramucosal perfusion when cardiac output is preserved in patients with ARDS

    A Scoping review on the polymerization of resin-matrix cements used in restorative dentistry

    Get PDF
    In dentistry, clinicians mainly use dual-cured or light-cured resin-matrix cements to achieve a proper polymerization of the organic matrix leading to enhanced physical properties of the cement. However, several parameters can affect the polymerization of resin-matrix cements. The main aim of the present study was to perform a scoping review on the degree of conversion (DC) of the organic matrix, the polymerization, and the light transmittance of different resin-matrix cements used in dentistry. A search was performed on PubMed using a combination of the following key terms: degree of conversion, resin cements, light transmittance, polymerization, light curing, and thickness. Articles in the English language published up to November 2022 were selected. The selected studies’ results demonstrated that restorative structures with a thickness higher than 1.5 mm decrease the light irradiance towards the resin-matrix cement. A decrease in light transmission provides a low energy absorption through the resin cement leading to a low DC percentage. On the other hand, the highest DC percentages, ranging between 55 and 75%, have been reported for dual-cured resin-matrix cements, although the polymerization mode and exposure time also influence the DC of monomers. Thus, the polymerization of resin-matrix cements can be optimized taking into account different parameters of light-curing, such as adequate light distance, irradiance, exposure time, equipment, and wavelength. Then, optimum physical properties are achieved that provide a long-term clinical performance of the cemented restorative materials

    Güçlendirilmiş dental seramiklerin vickers sertlikleri ve yük altında kırılma davranışları

    Get PDF
    Objective: The objectives of this study were to determine the Vicker`s hardness of reinforced dental ceramics and determine the modes of fractures under load. Methods: Four ceramic core groups (n=7/group) from leucite (Evopress,Wegold&amp;De), low leucite (Finesse, Ceramco), glass-infiltrated (Inceram Alumina,Vita) and lithium disilicate materials (E.max press, Ivoclar) were fabricated according to each manufacturers’ instructions (thickness: 3 mm, diameter: 5 mm). Their individual veneering ceramics were vibrated, condensed in a stainless steel mold (diameter: 5 mm, height: 5 mm) and fired on the core materials. The specimens were stored in distilled water at 37°C for 24 hours prior to indentation tests and embedded in polyesther moulds. Vickers hardness values (DUH±SD) were measured (cross-head speed:7,2 gf/s, load:200 gf) and statistically analysed (ANOVA). A load of 400 N was applied on the surfaces of specimens with a diamond indentor (diameter:1 mm) at the macro hardness test machine for crack formation. The crack modes for each group were observed under the scanning electrone microscope. Results: The Vickers hardness values for low leucite veneering ceramic were significantly (P&lt;0.05) higher (236±17), followed by the leucite (129±51), glass-infiltrated (117±38), and lithium disilicate (85±34) veneering ceramic materials in decreasing order. Mainly radial or cone cracks were observed after the application of load. Conclusion: The increase in the hardness of the material led to more crack formation and resulted in longer cracks. No crack formation extending to the core materials were observed in neither of the ceramic groups under these experimental conditions. ÖZET Amaç: Bu çalışmanın amacı güçlendirilmiş dental seramiklerin Vickers sertlik değerlerinin ve yük altındaki kırılma şekillerinin belirlenmesidir. Gereç ve Yöntem: Lösit (Evopress,Wegold&amp;De), düşük lösit (Finesse, Ceramco), cam infiltrasyonlu aluminöz seramik (Inceram Alumina,Vita) ve lityum disilikat (E.max press, Ivoclar) bazlı dört farklı seramik alt yap_ materyali (n=7/grup) her bir üretici firmanın önerileri doğrultusunda hazırlandı (3 mm kalınlıkta; 5 mm çapta). Her bir alt yapı seramiğine özgü kaplama seramikleri; paslanmaz çelik bir metal kalıpta (5mm çap 5mm yükseklikte) vibrasyonla kondanse edildi ve alt yapı seramiklerinin üzerine pişirildi. Örnekler batırma testlerinden önce 37°C’ de 24 saat distile suda bekletildikten sonra polyester kalıplara gömüldü. Vickers sertlik değerleri (DUH±SD) ölçüldü (çene hızı:7,2 gf/s, yük:200 gf) ve veriler istatistiksel olarak analiz edildi (ANOVA). Çatlak oluşumu için örneklerin üst yüzeylerine makro sertlik test cihazında batıcı elmas uç ile (1 mm çaplı) 400 N yük uygulandı. Alınan taramalı elektron mikroskop görüntüleri ile her bir gruba ilişkin çatlak şekilleri gözlemlendi. Bulgular: Gruplar arasında ortalama Vickers sertlik değerleri düşük lösit grubu için anlamlı olarak (P&lt;0.05) en yüksek bulunur iken (236±17), bunu lösit (129±51), cam infiltrasyonlu aluminöz seramik (117±38), ve lityum disilikat (85±34) kaplama seramik materyalleri azalan sırayla izledi. Yük uygulaması sonrasında genellikle ışınsal ya da koni şekilli çatlakların oluştuğu gözlendi. Sonuç: Seramik materyalin sertliğinin artması daha fazla ve daha uzun çatlak oluşumuna yol açtı. Bu çalışmadaki deneysel koşullar altında kaplama seramik gruplarının hiçbirinde alt yapı seramiklerine ulaşan çatlak oluşumu gözlenmedi

    Loss of heme oxygenase 2 causes reduced expression of genes in cardiac muscle development and contractility and leads to cardiomyopathy in mice

    Get PDF
    Obstructive sleep apnea (OSA) is a common breathing disorder that affects a significant portion of the adult population. In addition to causing excessive daytime sleepiness and neurocognitive effects, OSA is an independent risk factor for cardiovascular disease; however, the underlying mechanisms are not completely understood. Using exposure to intermittent hypoxia (IH) to mimic OSA, we have recently reported that mice exposed to IH exhibit endothelial cell (EC) activation, which is an early process preceding the development of cardiovascular disease. Although widely used, IH models have several limitations such as the severity of hypoxia, which does not occur in most patients with OSA. Recent studies reported that mice with deletion of hemeoxygenase 2 (Hmox2-/-), which plays a key role in oxygen sensing in the carotid body, exhibit spontaneous apneas during sleep and elevated levels of catecholamines. Here, using RNA-sequencing we investigated the transcriptomic changes in aortic ECs and heart tissue to understand the changes that occur in Hmox2-/- mice. In addition, we evaluated cardiac structure, function, and electrical properties by using echocardiogram and electrocardiogram in these mice. We found that Hmox2-/- mice exhibited aortic EC activation. Transcriptomic analysis in aortic ECs showed differentially expressed genes enriched in blood coagulation, cell adhesion, cellular respiration and cardiac muscle development and contraction. Similarly, transcriptomic analysis in heart tissue showed a differentially expressed gene set enriched in mitochondrial translation, oxidative phosphorylation and cardiac muscle development. Analysis of transcriptomic data from aortic ECs and heart tissue showed loss of Hmox2 gene might have common cellular network footprints on aortic endothelial cells and heart tissue. Echocardiographic evaluation showed that Hmox2-/- mice develop progressive dilated cardiomyopathy and conduction abnormalities compared to Hmox2+/+ mice. In conclusion, we found that Hmox2-/- mice, which spontaneously develop apneas exhibit EC activation and transcriptomic and functional changes consistent with heart failure

    Effect of short pulse laser patterning on adhesion of resin-matrix cements to zirconia

    Get PDF
    Yttria-stabilized tetragonal zirconia polycrytsal (Y-TZP) owing to its excellent mechanical properties, high degree of biocompatibility and attractive aesthetic properties have emerged as a popular dental biomaterial[1]–[4] Out of all zirconia system 3mol% yttria stabilized zirconia (3Y-TZP) have been used for monolithic crowns, inlays, onlays, dental posts and several other types of indirect restorations[5]. However zirconia is chemically inert and demands surface modification for strong bonding to its underlying substrate[6]–[11] It is highly crystalline in structure and is not readily etched with mineral acids. Several surface modification strategies have been employed so far for increasing adhesion of zirconia to its underlying substrate[12]– [14]. However there is so far no gold standard have been established for adhesion to zirconia. It also have weak adhesion when resin-matrix cements are used for bonding restorations. Air particle abrasion using Alumina (Al2O3) and Silica(SiO2) coated particles are popularly used for surface roughening and increasing bond strength. However they produces surface flaws and can be detrimental to longevity of restorations[14]–[16] Photo machining by the application of LASER (Light Amplification by Stimulated Emission of Radiation) offers an alternative due to its simplicity, flexibility, precision, and reproducibility and relatively low cost for increasing surface roughness and improving adhesion to zirconia[17]–[20] Therefore this study employed Nd:YAG laser for surface structuring and compared with conventional surface modification methods such as alumina blasting and compared the surface qualitatively as well as the resulting bond strengths are also comparedThis study was supported by FCT national funds, under the national support to R&D units grant, through the reference project UIDB/04436/2020 and UIDP/04436/2020. Additionally, this work was supported by POCI-01-0145-FEDER-031035_LaserMULTICER, CNPq-Brazil (CNPq/UNIVERSAL/421229/2018-7) and CAPES-HUMBOLDT Program (Grant number: 88881.197684/2018-01

    Factors associated with substance use among preclinical medical students in Turkey: a cross-sectional study

    Get PDF
    Introduction: Medical students experience high levels of stress due to their rigorous training, which can negatively affect their mental health. This study aimed to investigate substance use habits of medical students at Istanbul University-Cerrahpaşa and the association on their mental health and demographic factors. Methods: This cross-sectional survey study was conducted in March-April 2022 among preclinical medical students (years 1-3 of a 6-year program). A confidential, anonymous online survey consisting of four sections on sociodemographic and educational characteristics, nicotine use and dependence [Fagerström Test for Nicotine Dependence (FTND)], alcohol use [Alcohol Use Disorders Identification Test (AUDIT)], mental health status [12-item General Health Questionnaire (GHQ-12)], was distributed to 1131 students via WhatsApp and Telegram text messages. Mann-Whitney U and Kruskal Wallis tests compared variables’ distribution in the questionnaire categories. Spearman's correlation assessed associations between scales. Significance was p < 0.05. Results: The study included 190 medical students. A total of 26.3% of the participants were smokers, with 8.4% showing moderate to high levels of nicotine dependence. An estimated 45.8% and 8.4% reported low-risk consumption and risky usage of alcohol, respectively. There were statistically significant associations between substance use and demographic factors such as sex, GPA, and religious belief. The study found a statistically significant correlation between FTND scores and GHQ-12 scores, and, between FTND scores and AUDIT scores. Conclusion: The findings of this study will inform the development of interventions to improve the mental health and academic performance of medical students at Istanbul University-Cerrahpaşa. Furthermore, it will raise awareness about the importance of addressing substance use among medical students in Turkey

    Effects of 16% Carbamide Peroxide Bleaching on the Surface Properties of Glazed Glassy Matrix Ceramics

    Get PDF
    Objective To determine the influence of the home bleaching agent, Opalescence PF, on the surface roughness and microhardness of glazed glassy matrix CAD-CAM ceramics. Materials and Methods. The 28 sintered leucite- and lithium disilicate-reinforced ceramic specimens (IPS Empress CAD and IPS e.max CAD) were divided into control and bleached groups. The home bleaching agent was applied to specimens of bleached groups for 7 days. The surface roughness and microhardness of all specimens were measured. A scanning electron microscope was used to evaluate the surface properties. The data were statistically analyzed by two-way ANOVA. Results The control e.max CAD showed the lowest surface roughness values. For both Empress and e.max CAD, surface roughness was significantly higher for the bleached group (p < 0.05). No significant differences in microhardness were observed. Conclusions According to our study, patients should be careful when using home bleaching agents because whitening agents can affect the mechanical properties of full ceramic restorations like e.max CAD and Empress CAD. Ceramic polishing may be required in clinical situations where ceramic restorations are accidentally exposed to bleaching gels
    corecore