34 research outputs found

    A steady, radiative-shock method for computing X-ray emission from colliding stellar winds in close, massive-star binaries

    Get PDF
    We present a practical, efficient, semianalytic formalism for computing steady state X-ray emission from radiative shocks between colliding stellar winds in relatively close ( orbital period up to order tens of days) massive-star, binary systems. Our simplified approach idealizes the individual wind flows as smooth and steady, ignoring the intrinsic instabilities and associated structure thought to occur in such flows. By also suppressing thin-shell instabilities for wind-collision radiative shocks, our steady state approach avoids the extensive structure and mixing that has thus far precluded reliable computation of X-ray emission spectra from time- dependent hydrodynamical simulations of close-binary, wind- collision systems; but in ignoring the unknown physical level of such mixing, the luminosity and hardness of X-ray spectra derived here represent upper limits to what is possible for a given set of wind and binary parameters. A key feature of our approach is the separation of calculations for the small-scale shock-emission from the ram-pressure-balance model for determining the large-scale, geometric form of the wind-wind interaction front. Integrating the localized shock emission over the full interaction surface and using a warm-absorber opacity to take account of attenuation by both the smooth wind and the compressed, cooled material in the interaction front, the method can predict spectra for a distant observer at any arbitrary orbital inclination and phase. We illustrate results for a sample selection of wind, stellar, and binary parameters, providing both full X-ray light curves and detailed spectra at selected orbital phases. The derived spectra typically have a broad characteristic form, and by synthetic processing with the standard XSPEC package, we demonstrate that they simply cannot be satisfactorily fitted with the usual attenuated single-or two-temperature thermal-emission models. We conclude with a summary of the advantages and limitations of our approach and outline its potential application for interpreting detailed X- ray observations from close, massive-star binary systems

    Inference of hot star density stream properties from data on rotationally recurrent DACs

    Get PDF
    The information content of data on rotationally periodic recurrent discrete absorption components (DACs) in hot star wind emission lines is discussed. The data comprise optical depths tau(w,phi) as a function of dimensionless Doppler velocity w=(Deltalambda/lambda(0))(c/v(infinity)) and of time expressed in terms of stellar rotation angle phi. This is used to study the spatial distributions of density, radial and rotational velocities, and ionisation structures of the corotating wind streams to which recurrent DACs are conventionally attributed. The simplifying assumptions made to reduce the degrees of freedom in such structure distribution functions to match those in the DAC data are discussed and the problem then posed in terms of a bivariate relationship between tau(w, phi) and the radial velocity v(r)(r), transverse rotation rate Omega(r) and density rho(r, phi) structures of the streams. The discussion applies to cases where: the streams are equatorial; the system is seen edge on; the ionisation structure is approximated as uniform; the radial and transverse velocities are taken to be functions only of radial distance but the stream density is allowed to vary with azimuth. The last kinematic assumption essentially ignores the dynamical feedback of density on velocity and the relationship of this to fully dynamical models is discussed. The case of narrow streams is first considered, noting the result of Hamann et al. (2001) that the apparent acceleration of a narrow stream DAC is higher than the acceleration of the matter itself, so that the apparent slow acceleration of DACs cannot be attributed to the slowness of stellar rotation. Thus DACs either involve matter which accelerates slower than the general wind flow, or they are formed by structures which are not advected with the matter flow but propagate upstream (such as Abbott waves). It is then shown how, in the kinematic model approximation, the radial speed of the absorbing matter can be found by inversion of the apparent acceleration of the narrow DAC, for a given rotation law. The case of broad streams is more complex but also more informative. The observed tau(w,phi) is governed not only by v(r)(r) and Omega(r) of the absorbing stream matter but also by the density profile across the stream, determined by the azimuthal (phi(0)) distribution function F-0(phi(0)) of mass loss rate around the stellar equator. When F-0(phi(0)) is fairly wide in phi(0), the acceleration of the DAC peak tau(w, phi) in w is generally slow compared with that of a narrow stream DAC and the information on v(r)(r), Omega(r) and F- 0(phi(0)) is convoluted in the data tau(w, phi). We show that it is possible, in this kinematic model, to recover by inversion, complete information on all three distribution functions v(r)(r), Omega(r) and F-0(phi(0)) from data on tau(w, phi) of sufficiently high precision and resolution since v(r)(r) and Omega(r) occur in combination rather than independently in the equations. This is demonstrated for simulated data, including noise effects, and is discussed in relation to real data and to fully hydrodynamic models

    NLTE wind models of hot subdwarf stars

    Full text link
    We calculate NLTE models of stellar winds of hot compact stars (central stars of planetary nebulae and subdwarf stars). The studied range of subdwarf parameters is selected to cover a large part of these stars. The models predict the wind hydrodynamical structure and provide mass-loss rates for different abundances. Our models show that CNO elements are important drivers of subdwarf winds, especially for low-luminosity stars. We study the effect of X-rays and instabilities on these winds. Due to the line-driven wind instability, a significant part of the wind could be very hot.Comment: 7 pages, to appear in Astrophysics and Space Science. The final publication will be available at springerlink.com

    Method and new tabulations for flux-weighted line opacity and radiation line force in supersonic media

    Get PDF
    In accelerating and supersonic media, the interaction of photons with spectral lines can be of ultimate importance. However, fully accounting for such line forces currently can only be done by specialised codes in 1-D steady-state flows. More general cases and higher dimensions require alternative approaches. We presented a comprehensive and fast method for computing the radiation line-force using tables of spectral line-strength distribution parameters, which can be applied in arbitrary (multi-D, time-dependent) simulations, including those accounting for the line-deshadowing instability, to compute the appropriate opacities. We assumed local thermodynamic equilibrium to compute a flux-weighted line opacity from >4>4 million spectral lines. We derived the spectral line strength and tabulated the corresponding line-distribution parameters for a range of input densities ρ[1020,1010]gcm3\rho\in[10^{-20},10^{-10}]gcm^{-3} and temperatures T[104,104.7]KT\in[10^4,10^{4.7}]K. We found that the variation of the line distribution parameters plays an essential role in setting the wind dynamics in our models. In our benchmark study, we also found a good overall agreement between the O-star mass-loss rates of our models and those derived from steady-state studies using more detailed radiative transfer. Our models reinforce that self-consistent variation of the line-distribution parameters is important for the dynamics of line-driven flows. Within a well-calibrated O-star regime, our results support the proposed methodology. In practice, utilising the provided tables, yielded a factor >100>100 speed-up in computational time compared to specialised 1-D model-atmosphere codes of line-driven winds, which constitutes an important step towards efficient multi-D simulations. We conclude that our method and tables are ready to be exploited in various radiation-hydrodynamic simulations where the line force is important

    Accretion, Outflows, and Winds of Magnetized Stars

    Full text link
    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars are radiatively driven. In all of these cases, the magnetic field influences matter flow from the stars and determines many observational properties. In this chapter we review recent studies of accretion, outflows, and winds of magnetized stars with a focus on three main topics: (1) accretion onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and (3) winds from isolated massive magnetized stars. We show results obtained from global magnetohydrodynamic simulations and, in a number of cases compare global simulations with observations.Comment: 60 pages, 44 figure

    Collisional and Radiative Processes in Optically Thin Plasmas

    Get PDF
    Most of our knowledge of the physical processes in distant plasmas is obtained through measurement of the radiation they produce. Here we provide an overview of the main collisional and radiative processes and examples of diagnostics relevant to the microphysical processes in the plasma. Many analyses assume a time-steady plasma with ion populations in equilibrium with the local temperature and Maxwellian distributions of particle velocities, but these assumptions are easily violated in many cases. We consider these departures from equilibrium and possible diagnostics in detail

    Solar parameters for modeling interplanetary background

    Full text link
    The goal of the Fully Online Datacenter of Ultraviolet Emissions (FONDUE) Working Team of the International Space Science Institute in Bern, Switzerland, was to establish a common calibration of various UV and EUV heliospheric observations, both spectroscopic and photometric. Realization of this goal required an up-to-date model of spatial distribution of neutral interstellar hydrogen in the heliosphere, and to that end, a credible model of the radiation pressure and ionization processes was needed. This chapter describes the solar factors shaping the distribution of neutral interstellar H in the heliosphere. Presented are the solar Lyman-alpha flux and the solar Lyman-alpha resonant radiation pressure force acting on neutral H atoms in the heliosphere, solar EUV radiation and the photoionization of heliospheric hydrogen, and their evolution in time and the still hypothetical variation with heliolatitude. Further, solar wind and its evolution with solar activity is presented in the context of the charge exchange ionization of heliospheric hydrogen, and in the context of dynamic pressure variations. Also the electron ionization and its variation with time, heliolatitude, and solar distance is presented. After a review of all of those topics, we present an interim model of solar wind and the other solar factors based on up-to-date in situ and remote sensing observations of solar wind. Results of this effort will further be utilised to improve on the model of solar wind evolution, which will be an invaluable asset in all heliospheric measurements, including, among others, the observations of Energetic Neutral Atoms by the Interstellar Boundary Explorer (IBEX).Comment: Chapter 2 in the planned "Cross-Calibration of Past and Present Far UV Spectra of Solar System Objects and the Heliosphere", ISSI Scientific Report No 12, ed. R.M. Bonnet, E. Quemerais, M. Snow, Springe

    Observations of the Sun at Vacuum-Ultraviolet Wavelengths from Space. Part II: Results and Interpretations

    Full text link

    Numerical models of collisions between core-collapse supernovae

    No full text
    Recent observations of luminous Type IIn supernovae (SNe) provide compelling evidence that massive circumstellar shells surround their progenitors. In this paper we investigate how the properties of such shells influence the SN light curve by conducting numerical simulations of the interaction between an expanding SN and a circumstellar shell ejected a few years prior to core collapse. Our parameter study explores how the emergent luminosity depends on a range of circumstellar shell masses, velocities, geometries and wind mass-loss rates, as well as variations in the SN mass and energy. We find that the shell mass is the most important parameter, in the sense that higher shell masses (or higher ratios of Mshell/MSN) lead to higher peak luminosities and higher efficiencies in converting shock energy into visual light. Lower mass shells can also cause high peak luminosities if the shell is slow or if the SN ejecta are very fast, but only for a short time. Sustaining a high luminosity for durations of more than 100 d requires massive circumstellar shells of the order of 10 M or more. This reaffirms previous comparisons between pre-SN shells and shells produced by giant eruptions of luminous blue variables (LBVs), although the physical mechanism responsible for these outbursts remains uncertain. The light-curve shape and observed shell velocity can help diagnose the approximate size and density of the circumstellar shell, and it may be possible to distinguish between spherical and bipolar shells with multi-wavelength light curves. These models are merely illustrative. One can, of course, achieve even higher luminosities and longer duration light curves from interaction by increasing the explosion energy and shell mass beyond values adopted here
    corecore