47 research outputs found

    Phospho-aspirin (MDC-22) inhibits breast cancer in preclinical animal models: an effect mediated by EGFR inhibition, p53 acetylation and oxidative stress

    Get PDF
    BACKGROUND: The anticancer properties of aspirin are restricted by its gastrointestinal toxicity and its limited efficacy. Therefore, we synthesized phospho-aspirin (PA-2; MDC-22), a novel derivative of aspirin, and evaluated its chemotherapeutic and chemopreventive efficacy in preclinical models of triple negative breast cancer (TNBC). METHODS: Efficacy of PA-2 was evaluated in human breast cancer cells in vitro, and in orthotopic and subcutaneous TNBC xenografts in nude mice. Mechanistic studies were also carried out to elucidate the mechanism of action of PA-2. RESULTS: PA-2 inhibited the growth of TNBC cells in vitro more potently than aspirin. Treatment of established subcutaneous TNBC xenografts (MDA-MB-231 and BT-20) with PA-2 induced a strong growth inhibitory effect, resulting in tumor stasis (79% and 90% inhibition, respectively). PA-2, but not aspirin, significantly prevented the development of orthotopic MDA-MB-231 xenografts (62% inhibition). Mechanistically, PA-2: 1) inhibited the activation of epidermal growth factor receptor (EGFR) and suppressed its downstream signaling cascades, including PI3K/AKT/mTOR and STAT3; 2) induced acetylation of p53 at multiple lysine residues and enhanced its DNA binding activity, leading to cell cycle arrest; and 3) induced oxidative stress by suppressing the thioredoxin system, consequently inhibiting the activation of the redox sensitive transcription factor NF-ÎşB. These molecular alterations were observed in vitro and in vivo, demonstrating their relevance to the anticancer effect of PA-2. CONCLUSIONS: Our findings demonstrate that PA-2 possesses potent chemotherapeutic efficacy against TNBC, and is also effective in its chemoprevention, warranting further evaluation as an anticancer agent

    Differential expression of miRNAs in colon cancer between African and Caucasian Americans: Implications for cancer racial health disparities

    Get PDF
    Colorectal cancer (CRC) incidence and mortality are higher in African Americans (AAs) than in Caucasian Americans (CAs) and microRNAs (miRNAs) have been found to be dysregulated in colonic and other neoplasias. The aim of this exploratory study was to identify candidate miRNAs that could contribute to potential biological differences between AA and CA colon cancers. Total RNA was isolated from tumor and paired adjacent normal colon tissue from 30 AA and 31 CA colon cancer patients archived at Stony Brook University (SBU) and Washington University (WU)-St. Louis Medical Center. miRNA profiles were determined by probing human genome-wide miRNA arrays with RNA isolated from each sample. Using repeated measures analysis of variance (RANOVA), miRNAs were selected that exhibited significant (p<0.05) interactions between race and tumor or significant (fold change >1.5, p<0.05) main effects of race and/or tumor. Quantitative polymerase chain reaction (q-PCR) was used to confirm miRNAs identified by microarray analysis. Candidate miRNA targets were analyzed using immunohistochemistry. RANOVA results indicated that miR-182, miR152, miR-204, miR-222 and miR-202 exhibited significant race and tumor main effects. Of these miRNAs, q-PCR analysis confirmed that miR-182 was upregulated in AA vs. CA tumors and exhibited significant race:tumor interaction. Immunohistochemical analysis revealed that the levels of FOXO1 and FOXO3A, two potential miR-182 targets, are reduced in AA tumors. miRNAs may play a role in the differences between AA and CA colon cancer. Specifically, differences in miRNA expression levels of miR-182 may contribute to decreased survival in AA colon cancer patients

    Protective effects of FTY720 on chronic allograft nephropathy by reducing late lymphocytic infiltration

    Get PDF
    Protective effects of FTY720 on chronic allograft nephropathy by reducing late lymphocytic infiltration.BackgroundLymphocytic infiltration is obvious throughout early and late stages of chronic allograft nephropathy. Early infiltrating lymphocytes are involved in initial insults to kidney allografts, but the contribution of late infiltration to long-term allograft attrition is still controversial. Early application of FTY720 reduced the number of graft infiltrating lymphocytes, and inhibited acute rejection. The present study investigated the potential of FTY720 to reduce the number of infiltrating lymphocytes even at a late stage, and, thus, slow the pace of chronic allograft nephropathy.MethodsFisher (F344) rat kidneys were orthotopically transplanted into Lewis recipients with an initial 10-day course of cyclosporine A (1.5 mg/kg/day). FTY720, at a dose of 0.5 mg/kg/day, or vehicle was administered to recipients either from weeks 12 to 24 or from 20 to 24 after transplantation. Animals were harvested 24 weeks after transplantation for histologic, immunohistologic, and molecular analysis.ResultsFTY720, either initiated at 12 or 20 weeks after transplantation, reduced urinary protein excretion, and significantly ameliorated glomerulosclerosis, interstitial fibrosis, tubular atrophy, and intimal proliferation of graft arteries at 24 weeks after transplantation. Furthermore FTY720 markedly suppressed lymphocyte infiltration and decreased mRNA levels of interleukin-10 (IL-10), transforming growth factor-β (TGF-β), and platelet-derived growth factor-B (PDGF-B) but enhanced the number of apoptotic cells in grafts.ConclusionsFTY720 ameliorated chronic allograft nephropathy even at advanced stages. Furthermore, our data suggest that this effect was achieved by a reduction of graft infiltrating lymphocytes

    Role of the Polyol Pathway in Locomotor Recovery and Wallerian Degeneration after Spinal Cord Contusion Injury

    No full text
    Spinal cord contusion injury leads to Wallerian degeneration of axonal tracts, resulting in irreversible paralysis. Contusion injury causes perfusion loss by thrombosis and vasospasm, resulting in spinal cord ischemia. In several tissues, including heart and brain, ischemia activates polyol pathway enzymes-aldose reductase (AR) and sorbitol dehydrogenase (SDH)-that convert glucose to sorbitol and fructose in reactions, causing oxidative stress and tissue loss. We sought to determine whether activation of this pathway, which has been termed glucotoxicity, contributes to tissue loss after spinal cord contusion injury. We tested individual treatments with AR inhibitors (sorbinil or ARI-809), SDH inhibitor (CP-470711), superoxide dismutase mimetic (tempol), or combined sorbinil and tempol. Each treatment significantly increased locomotor recovery and reduced loss of spinal cord tissue in a standard model of spinal cord contusion in rats. Tissue levels of sorbitol and axonal AR (AKR1B10) expression were increased after contusion injury, consistent with activation of the polyol pathway. Sorbinil treatment inhibited the above changes and also decreased axonal swelling and loss, characteristic of Wallerian degeneration. Treatment with tempol induced recovery of locomotor function that was similar in magnitude, but non-additive to sorbinil, suggesting a shared mechanism of action by reactive oxygen species (ROS). Exogenous induction of hyperglycemia further increased injury-induced axonal swelling, consistent with glucotoxicity. Unexpectedly, contusion increased spinal cord levels of glucose, the primary polyol pathway substrate. These results support roles for spinal glucose elevation and tissue glucotoxicity by the polyol pathway after spinal cord contusion injury that results in ROS-mediated axonal degeneration

    Acid-sensitive channel inhibition prevents fetal alcohol spectrum disorders cerebellar Purkinje cell loss

    No full text
    Ethanol is now considered the most common human teratogen. Educational campaigns have not reduced the incidence of ethanol-mediated teratogenesis, leading to a growing interest in the development of therapeutic prevention or mitigation strategies. On the basis of the observation that maternal ethanol consumption reduces maternal and fetal pH, we hypothesized that a pH-sensitive pathway involving the TWIK-related acid-sensitive potassium channels (TASKs) is implicated in ethanol-induced injury to the fetal cerebellum, one of the most sensitive targets of prenatal ethanol exposure. Pregnant ewes were intravenously infused with ethanol (258 ± 10 mg/dl peak blood ethanol concentration) or saline in a “3 days/wk binge” pattern throughout the third trimester. Quantitative stereological analysis demonstrated that ethanol resulted in a 45% reduction in the total number of fetal cerebellar Purkinje cells, the cell type most sensitive to developmental ethanol exposure. Extracellular pH manipulation to create the same degree and pattern of pH fall caused by ethanol (manipulations large enough to inhibit TASK 1 channels), resulted in a 24% decrease in Purkinje cell number. We determined immunohistochemically that TASK 1 channels are expressed in Purkinje cells and that the TASK 3 isoform is expressed in granule cells of the ovine fetal cerebellum. Pharmacological blockade of both TASK 1 and TASK 3 channels simultaneous with ethanol effectively prevented any reduction in fetal cerebellar Purkinje cell number. These results demonstrate for the first time functional significance of fetal cerebellar two-pore domain pH-sensitive channels and establishes them as a potential therapeutic target for prevention of ethanol teratogenesis

    A Novel Ras Inhibitor (MDC-1016) Reduces Human Pancreatic Tumor Growth in Mice

    No full text
    Pancreatic cancer has one of the poorest prognoses among all cancers partly because of its persistent resistance to chemotherapy. The currently limited treatment options for pancreatic cancer underscore the need for more efficient agents. Because activating Kras mutations initiate and maintain pancreatic cancer, inhibition of this pathway should have a major therapeutic impact. We synthesized phospho-farnesylthiosalicylic acid (PFTS; MDC-1016) and evaluated its efficacy, safety, and metabolism in preclinical models of pancreatic cancer. PFTS inhibited the growth of human pancreatic cancer cells in culture in a concentration- and time-dependent manner. In an MIA PaCa-2 xenograft mouse model, PFTS at a dose of 50 and 100 mg/kg significantly reduced tumor growth by 62% and 65% (P < .05 vs vehicle control). Furthermore, PFTS prevented pancreatitis-accelerated acinar-to-ductal metaplasia in mice with activated Kras. PFTS appeared to be safe, with the animals showing no signs of toxicity during treatment. Following oral administration, PFTS was rapidly absorbed, metabolized to FTS and FTS glucuronide, and distributed through the blood to body organs. Mechanistically, PFTS inhibited Ras-GTP, the active form of Ras, both in vitro and in vivo, leading to the inhibition of downstream effector pathways c-RAF/mitogen-activated protein-extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK1/2 kinase and phosphatidylinositol 3-kinase/AKT. In addition, PFTS proved to be a strong combination partner with phospho-valproic acid, a novel signal transducer and activator of transcription 3 (STAT3) inhibitor, displaying synergy in the inhibition of pancreatic cancer growth. In conclusion, PFTS, a direct Ras inhibitor, is an efficacious agent for the treatment of pancreatic cancer in preclinical models, deserving further evaluation

    MC-12, an Annexin A1-Based Peptide, Is Effective in the Treatment of Experimental Colitis

    Get PDF
    <div><p>Annexin A1 (ANXA1) inhibits NF-κB, a key regulator of inflammation, the common pathophysiological mechanism of inflammatory bowel diseases (IBD). MC-12, an ANXA1-based tripeptide, suppresses NF-κB activation. Here, we determined the efficacy of MC-12 in the control of IBD. Mice with colitis induced by dextran sodium sulfate (DSS) or 2,4,6-trinitro benzene sulfonic acid (TNBS) were treated with various doses of MC-12 administered intraperitoneally, orally or intrarectally. We determined colon length and the histological score of colitis, and assayed: in colon tissue the levels of TNF-α, IFN-γ, IL-1β, IL-6 and IL-10 by RT-PCR; prostaglandin E<sub>2</sub> (PGE<sub>2</sub>), cytoplasmic phospholipase A<sub>2</sub> (cPLA<sub>2</sub>) and myeloperoxidase by immunoassay; and COX-2 and NF- κB by immunohistochemistry; and in serum the levels of various cytokines by immunoassay. In both models MC-12: reversed dose-dependently colonic inflammation; inhibited by up to 47% myeloperoxidase activity; had a minimal effect on cytoplasmic phospholipase A<sub>2</sub>; reduced significantly the induced levels of TNF-α, IFN-γ, IL-1β, IL-6 and IL-10, returning them to baseline. DSS and TNBS markedly activated NF-κB in colonic epithelial cells and MC-12 decreased this effect by 85.8% and 72.5%, respectively. MC-12 had a similar effect in cultured NCM460 normal colon epithelial cells. Finally, MC-12 suppressed the induction of COX-2 expression, the level of PGE<sub>2</sub> in the colon and PGE<sub>2</sub> metabolite in serum. In conclusion, MC-12, representing a novel class of short peptide inhibitors of NF-κB, has a strong effect against colitis in two preclinical models recapitulating features of human IBD. Its mechanism of action is complex and includes pronounced inhibition of NF-κB. MC-12 merits further development as an agent for the control of IBD.</p> </div

    The effect of MC-12 on DSS- and TNBS-induced colitis in mice.

    No full text
    <p>Mice (7/group) received 2% DSS in drinking water or 2.5% TNBS intra-colonically to induce colitis and were treated with vehicle or MC-12 given IP, PO or IR. <b><i>A:</i></b> The body weight of mice of DSS model during treatment by IP, PO or IR, expressed as percentage of baseline (day 0). <b><i>B:</i></b> The colon length of DSS model with MC-12 treatments by IP, PO or IR. <b><i>C:</i></b> The body weight of mice of TNBS model during treatment, expressed as percentage of baseline (day 0). <b><i>D:</i></b> The colonic length of mice of TNBS model in three treatment groups. These studies were repeated at least once giving similar results. Values are mean ± SEM. *, statistically significant difference from the vehicle-treated group.</p
    corecore