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Abstract. Colorectal cancer (CRC) incidence and mortality 
are higher in African Americans (AAs) than in Caucasian 
Americans (CAs) and microRNAs (miRNAs) have been 
found to be dysregulated in colonic and other neoplasias. 
The aim of this exploratory study was to identify candi-
date miRNAs that could contribute to potential biological 
differences between AA and CA colon cancers. Total 
RNA was isolated from tumor and paired adjacent normal 
colon tissue from 30 AA and 31 CA colon cancer patients 
archived at Stony Brook University (SBU) and Washington 
University (WU)‑St. Louis Medical Center. miRNA profiles 
were determined by probing human genome-wide miRNA 
arrays with RNA isolated from each sample. Using repeated 
measures analysis of variance (RANOVA), miRNAs were 
selected that exhibited significant (p<0.05) interactions 
between race and tumor or significant (fold change >1.5, 
p<0.05) main effects of race and/or tumor. Quantitative poly-
merase chain reaction (q-PCR) was used to confirm miRNAs 
identified by microarray analysis. Candidate miRNA targets 
were analyzed using immunohistochemistry. RANOVA 
results indicated that miR-182, miR152, miR-204, miR-222 
and miR-202 exhibited significant race and tumor main 
effects. Of these miRNAs, q-PCR analysis confirmed that 
miR-182 was upregulated in AA vs. CA tumors and exhibited 

significant race:tumor interaction. Immunohistochemical 
analysis revealed that the levels of FOXO1 and FOXO3A, 
two potential miR-182 targets, are reduced in AA tumors. 
miRNAs may play a role in the differences between AA and 
CA colon cancer. Specifically, differences in miRNA expres-
sion levels of miR-182 may contribute to decreased survival 
in AA colon cancer patients.

Introduction

In the United States the incidence and mortality rates from 
colorectal cancer (CRC) are higher in African Americans 
(AAs) than for all other racial and ethnic groups  (1). 
Socio‑economic differences may contribute to delayed detec-
tion of cancers. However, a relatively recent study reported 
that despite receiving equal treatment and after controlling 
for known prognostic factors, AAs with high-grade tumors 
were three times more likely to die as a result of CRC than 
Caucasian Americans (CAs) with high-grade tumors (2). The 
most recent population-based study shows a 30-50% higher 
rate of disease-specific mortality after diagnosis among AAs 
than in CAs (3-8) and this disparity between the 2 groups has 
greatly widened in recent years. This has occurred despite 
an increase of CRC screening for both groups. Because one 
would not expect incidence rates to increase with increased 
screening and/or detection, it is highly unlikely that socioeco-
nomic status and dietary factors, factors normally attributed 
to this phenomenon, are the only determinants of racial 
cancer disparity. Additionally, AAs are diagnosed with CRC 
at a younger age than Caucasian Americans (CAs) (9). The 
observation that distinctive mutations in mismatch repair 
genes hMLH1 and hMSH2 (10), high microsatellite insta-
bility (MSI‑H), and unique polymorphisms in the p53 tumor 
suppressor gene (11) are more prevalent in AA colon cancers 
than in CA colon cancers, lend support to the concept that 
biological differences between AA and CA tumors may 
contribute to increased mortality in AA patients.
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miRNAs are frequently dysregulated in cancer and have 
shown promise as tissue-based markers for cancer classifica-
tion and prognostication (12,13). Initially synthesized as long 
primary transcripts, miRNA are processed to small (17-22 nt) 
regulatory RNAs through a series of steps. miRNAs control 
gene expression via specific sites at the 3'-UTR of their 
target mRNAs by accelerating mRNA degradation and/or by 
repression of translation. A number of studies have reported 
differential expression of miRNAs in paired colon cancer 
tumor and adjacent normal colon samples (14-21). miRNAs 
have also been shown to act either as oncogenes [e.g., miR-155, 
miR-17-5p and miR-21 (22,23)] or as tumor suppressors [e.g., 
miR-15a, miR-16-1 and let-7 (24)]. In addition, other studies 
have indicated that miRNAs are involved in tumor migra-
tion and invasion (25). Together, these findings support the 
premise that the dysregulation of miRNAs can lead to the 
development of cancer.

In this investigation, microarray analysis and qRT-PCR 
technologies are used to determine whether miRNA levels are 
disproportionately expressed in the tumors of AA CRC patients 
as compared to those of CA CRC patients. In this study, we 
report the identification of miR-182 as a potential candidate 
that may contribute to increased colon cancer mortality in AA 
compared to CA patients.

Materials and methods

Ethics statement. This study was approved by the Washington 
University School (WU) of Medicine-St. Louis and Stony 
Brook University (SBU) Institutional Review Boards. Tissues 
were banked at the SBU (http://www.stonybrookmedical-
center.org/pathology/biobank) and WU (http://www.siteman.
wustl.edu/ContentPage.aspx?id=243) human bio-specimen 
bio-banks. The samples and clinical metadata were de-identi-
fied, assigned a patient code and a sample code prior to release 
to the researchers and qualified for a waiver of consent per 
45CFR46.116.d.

Demographics of colon cancer subjects. The available clinical 
metadata for the WU samples were limited to age at the time 
of surgical resection of the tumor, gender (male vs. female) 
and race (AA or CA). Paired tumor and normal colon RNA 
samples were prepared from 30 AA and 31 CA subjects. The 
average age of the CA (63.4±3.5) and AA (61.3±3.6) subjects 
were not significantly different. Similarly, the gender distribu-
tion was not significantly different for AA (15 male, 14 female 
and 1 unspecified) and CA (17 male and 14 female) patients.

Extraction of RNA from SBU and WU colon cancer tumor 
and adjacent normal colon tissue samples. For the SBU 
samples, sections of 30  pairs of formalin-fixed paraffin-
embedded (FFPE) tumor and adjacent normal colon tissues 
were obtained through the Stony Brook Research Histology 
Core Lab from 15 CA and 15 AA colon cancer patients who 
underwent colon cancer surgery at Stony Brook University 
Medical Center. All SBU tissue sections were reviewed by 
a surgical pathologist (K.R.S.). Tumor sections selected 
contained a minimum of 70% neoplastic cells, ensuring that 
the majority of tissue extracted was of neoplastic origin. The 
control samples were adjacent normal colon tissue removed 

during colon resection. Total RNA was isolated from three 
10‑µm thick tissue sections using a miRNeasy FFPE kit 
(Qiagen, Valencia, CA). Briefly, tumor sections, as determined 
morphologically by H&E staining, were removed from slides 
by scraping with a scalpel blade. Paraffin was removed from 
the sample using xylene and an ethanol wash. Cells were lysed 
by digestion with proteinase K at 56˚C for 15 min followed 
by additional incubation at 80˚C for 15 min. The supernatant 
was treated with DNase, followed by the addition of Cell Lysis 
Buffer and ethanol. Total RNA, including miRNA, was bound 
to an RNeasy MinElute column (Qiagen). The column was 
washed twice with RPE buffer (Qiagen) and total RNA eluted 
with RNase-free water.

For the WU sample set, total RNA were prepared by and 
obtained from the Siteman Cancer Center Tissue Procurement 
Facility at Washington University (WU)-St. Louis from 
16  CA and 15  AA colon cancer patients who underwent 
colon cancer surgery at Barnes Jewish Hospital. Here, total 
RNA was extracted from 31 pairs of snap-frozen tumors and 
adjacent matching normal colon using TRIzol followed by 
lithium precipitation (Invitrogen, Carlsbad, CA) according 
to the manufacturer's protocol. For all samples, RNA quan-
tity and quality was determined using a Nanodrop 2000C 
(Thermo Scientific, Waltham, MA).

Agilent miRNA microarray analysis. Whole genome miRNA 
expression profiles for predicting colon cancer risk with respect 
to race were acquired using single color Agilent miRNA micro-
arrays, release 16.0G4870A 6x60 K (Agilent Technologies, 
Foster City, CA). miRNAs were labeled and hybridized 
using Agilent miRNA Complete Labeling and Hybridization 
Kit (Agilent Technologies) in the Stony Brook University 
Genomics Core Facility. Labeled miRNA was used to probe 
and hybridize with Agilent Human Microarray Kit V3, 8x15 K 
arrays, based on Sanger miRbase release 12.0 (G4470C, 
Agilent Technologies). Hybridization was performed at 55˚C for 
20 h in a hybridization oven (Agilent Technologies) according 
to the manufacturer's protocol. Hybridized microarrays were 
scanned with a DNA microarray scanner (Agilent G2565BA), 
and features were extracted using the Agilent Feature 
Extraction (AFE) image analysis tool (version A.10.7.3.1) with 
default protocols and settings. To ensure reliable results as to 
upregulation and downregulation in the miRNAs of a given 
patient, paired tumor/normal matched samples were run on the 
same array. All microarray data have been deposited in the 
NCBI GEO database with accession number GSE48267.

Microarray preprocessing. The raw probe-level data were 
imported into GeneSpring 12.5GX (Agilent Technologies), and 
the miRNA signal was normalized using the default setting: 
threshold raw signal to 1.0, percent shift to 90th percentile 
as the normalization algorithm, and no baseline transforma-
tion. After normalization, the probes were filtered using the 
gIsGeneDetected flag provided in Agilent AFE software to 
remove miRNAs that were not detected in 60% of tumor or 
60% of adjacent normal colon samples. Two class analysis 
of tumor vs. adjacent normal tissue RNA, AA tumor vs. CA 
tumor and AA adjacent normal vs. CA adjacent normal were 
conducted using Significance Analysis of Microarray (26) 
with a 1.5‑fold change and FDR <0.05 for significance.
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qRT-PCR. For all samples, cDNA was synthesized from 
100 ng of total RNA using the Universal cDNA Synthesis Kit 
(Exiqon, Woburn, MA). After cDNA conversion, quantification 
of candidate miRNAs (miR-182 and miR204) was determined 
using commercial specific microRNA LNA PCR primers 
(Exiqon). Real-time PCR was conducted using Universal RT 
SYBR Green master mix (Exiqon) in a Realplex real-time 
PCR machine (Eppendorf, Hauppauge, NY). Quantitative 
PCR was done under the following cycling conditions: 95˚C 
for 10 min, and 45 cycles of 95˚C for 10 s, 60˚C for 1 min. 
All PCRs were done in triplicate. Transcript normalization of 
samples was obtained using miR-191 as a reference (27). The 
relative expression of the candidate miRNAs was measured 
by the threshold cycle Ct miR-191-Ct candidate miRNA. The 
effects of race, tumor, institutional source and first order inter-
actions were analyzed by RANOVA (see below).

Immunohistochemistry. The SBU FFPE tissue sections were 
deparaffinized and rehydrated according to standard protocols. 
Tissue sections were pretreated for antigen retrieval by heating 
in a microwave oven for 15 min in a 0.01 M citric acid solution 
(pH 6.0). Staining of FFPE colon specimens was performed 
according to the instructions for rapid immunohistochemical 
staining using Histostain-Plus Bulk Kit (Life Technologies, 
Grand Island, NY). Primary antibodies to FOXO1 (1:100 dilu-
tion/Cell Signaling Technology Inc., Davers, MA) and FOXO3 
(1:250/Cell Signaling Technology Inc.) were used to detect 
these targets of miR-182 and miR-183. An isotypic antibody 
control was included with each tissue section.

Scoring. A pathologist (N.O.), blinded to sample identity, 
evaluated the SBU tissue sections. The ‘intensity of staining’ 
of each tissue sample was scored using the following scale: 
0, no staining; 1, light staining; 2, medium staining; and 3, 
maximal staining. Bootstrap RANOVA was used to determine 
significant differences of FOXO1 and FOXO3a expression by 
immunohistochemistry.

Statistical analysis. Repeated measures analysis of variance 
(RANOVA) was implemented to evaluate significant effects in 
the model, with tumor as a within-subjects effect and race and 
institutional source of the RNA samples as between-subjects 
effects. Our analysis was based on a mixed model with 
individual effect on miRNA expression profile as a random 
effect, and tumor, race and data source as fixed effects: 
Yhijk = μ + (Raceh + Tumorj + Sourcek)2 + Subi(kh) + ehijk.

Here Yhijk is the miRNA expression level for subject i, of 
race indicator h (h=1 or 0 if the subject is AA or CA, respec-
tively), tumor indicator j (j=1 or 0 for tumor or normal tissue, 
respectively), and source indicator k (k=1 or 0 for SBU or WU, 
respectively). On the right hand side of the equation, μ is the 
overall mean, followed by the race, tumor, source individual 
effects, two-way and three-way interactions, the random 
subject effect Subi(kh), and the random error ehijk independent 
of Subi(kh). Constraints ∑ℎRaceh = ∑jTumorj = ∑kSourcek = 0 
are imposed for identifiability.

Since normality assumptions did not hold for these 
datasets, a non‑parametric bootstrap approach was adopted 
to estimate the p-values (28). To further enhance the robust-
ness of the tests, we considered both the p-values and the 

fold change to test for significance. The threshold was set as 
fold change >1.5 and p<0.05 for main effects. For interaction 
terms, the fold change threshold was set at 1.5 for either the 
AA tumor/CA tumor or the AA normal/CA normal ratio and 
the p-value threshold was set at 0.05.

Results

The effect of race and tumor on miRNA expression. Our 
strategy for selecting candidate miRNAs that could poten-
tially be associated with biological differences between AA 
and CA colon cancers was to analyze the effect of race and 
tumor using RANOVA (see Materials and methods). Since the 
samples obtained from SBU and WU included differences in 
i) geographic location of the subjects; ii) processing and storage 
of the tissues (FFPE vs. snap frozen); and iii) RNA isolation 
procedure, the effect of institutional source was also included. 
While SAM (26) is extremely robust for two class comparisons, 
the advantage of RANOVA is that all three terms and first order 
interactions could be incorporated in the model.

The effect of the tumor was large compared to the effects of 
race or institutional source. RANOVA identified 49 miRNAs 
that were upregulated and 40  miRNAs that were down-
regulated in tumor vs. adjacent normal colonic tissue (Table I). 
This included the upregulation of a number of miRNAs 
(e.g.,  miR-21, miR-31, miR-96 and miR-135b, miR-182, 
miR-183) (14-19,29-34) and downregulation of miRNAs (e.g., 
133a and mir-1) (31) which were previously noted.

As shown in Table II, 4 miRNAs demonstrated significant 
race:tumor interaction and 5 miRNAs showed both race and 
tumor main effects. Of the 5 miRNA with both race and 
tumor main effects, we noted the prominence of miR-182 and 
miR-204, which were identified based on RANOVA analysis of 
the SBU miRNA profiles alone (data not shown) and confirmed 
by the combined data sets. miR-182 was upregulated 11.1‑fold 
in paired tumor vs. normal tissue and was increased 2-fold 
in AA vs. CA tumors. miR-204 was downregulated 3.6-fold 
in tumor vs. adjacent normal colonic tissue and increased 
2.6‑fold in AA vs. CA tumors.

miR-182 demonstrates a significant race:tumor interactions 
based on qRT-PCR results. qRT-PCR using primers for 25 of 
the miRNAs which were most differentially expressed was 
conducted to confirm results of the miRNA microarray anal-
ysis. The miRNAs which exhibited statistical significance as 
determined by RANOVA analysis were mir-182 and miR-183 
(Fig. 1). Other miRNAs (i.e., miR-135b and miR-204) exhibited 
significant difference between tumor and normal tissues only. 
Although the increased expression, as determined by miRNA 
microarray, of miR-204 in AA tumors compared to CA tumors 
could not be confirmed by qRT-PCR, our qRT-PCR analysis 
did confirm that of previous reports indicating downregulation 
of miR-204 in tumor vs. normal tissues.

RANOVA analysis of only miR-182 and its cluster partner, 
miR-183 demonstrated a significant race:tumor interaction 
term (p<0.05, Table III). As demonstrated in Fig. 2, the lines 
connecting the paired tumor and normal tissues cross, thus 
graphically demonstrating the interaction between race and 
tumor in miR-182 qRT-PCR data. The relative level of miR-182 
is much higher in the tumor than in the paired adjacent normal 
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Table I. miRNAs that were significantly upregulated and downregulated in tumor vs. paired adjacent normal colon tissues.

Upregulated	 Fold change		  Downregulated	 Fold change
miRNA	 tumor/normal	 p-value	 miRNA	 tumor/normal	 p-value

hsa-miR-135b	 46.25	 0	 hsa-miR-133a	 0.04	 0
hsa-miR-183	 20.00	 0	 hsa-miR-139-5p	 0.07	 0
hsa-miR-31	 17.05	 0	 hsa-miR-378*	 0.09	 0
hsa-miR-96	 11.95	 0	 hsa-miR-133b	 0.10	 0
hsa-miR-182	 11.12	 0	 hsa-miR-1	 0.10	 0
hsa-miR-552	   8.60	 0	 hsa-miR-30a*	 0.11	 0
hsa-miR-224	   5.47	 0	 hsa-miR-490-3p	 0.13	 0
hsa-miR-503	   4.81	 0	 hsa-miR-149	 0.14	 0
hsa-miR-18a	   4.43	 0	 hsa-miR-363	 0.16	 0
hsa-miR-17*	   3.90	 0	 hsa-miR-145*	 0.18	 0
hsa-miR-409-3p	   3.65	 0	 hsa-miR-129-3p	 0.18	 0
hsa-miR-424	   3.49	 0	 hsa-miR-143*	 0.21	 0
hsa-miR-203	   3.42	 0	 hsa-miR-145	 0.23	 0
hsa-miR-18b	   3.38	 0.001	 hsa-miR-218	 0.23	 0
hsa-miR-7	   3.36	 0	 hsa-miR-204	 0.28	 0.004
hsa-miR-21*	   3.24	 0	 hsa-miR-143	 0.29	 0
hsa-miR-629*	   3.15	 0	 hsa-miR-23b*	 0.29	 0
hsa-miR-19a	   2.98	 0.001	 hsa-miR-29c*	 0.31	 0
hsa-miR-424*	   2.91	 0	 hsa-miR-338-3p	 0.33	 0
hsa-miR-21	   2.80	 0	 hsa-miR-195	 0.35	 0
hsa-miR-181c	   2.67	 0.002	 hsa-miR-24-1*	 0.41	 0.002
hsa-miR-34b*	   2.58	 0	 hsa-miR-30a	 0.41	 0
hsa-miR-148a	   2.48	 0.003	 hsa-miR-662	 0.42	 0.003
hsa-miR-34a	   2.28	 0.02	 hsa-miR-497	 0.42	 0
hsa-miR-221	   2.27	 0.001	 hsa-miR-99a	 0.44	 0
hsa-miR-146a	   2.18	 0	 hsa-miR-451	 0.46	 0
hsa-miR-301a	   2.16	 0.002	 hsa-miR-28-3p	 0.48	 0
hsa-miR-501-3p	   2.16	 0	 hsa-miR-30e*	 0.49	 0.01
hsa-miR-1246	   2.10	 0.003	 hsa-miR-378	 0.50	 0
hsa-miR-29b	   2.09	 0.004	 hsa-miR-125b-2*	 0.50	 0.002
hsa-miR-130b	   2.05	 0	 hsa-miR-149-2*	 0.51	 0.006
hsa-miR-663b	   2.04	 0.001	 hsa-miR-610	 0.52	 0.015
hsa-miR-20a	   2.03	 0	 hsa-miR-30c-1*	 0.53	 0.005
hsa-miR-296-5p	   2.03	 0	 hsa-miR-100	 0.56	 0
hsa-miR-17	   1.95	 0	 hsa-miR-30c	 0.57	 0
hsa-miR-92a	   1.89	 0	 hsa-miR-193b*	 0.59	 0.044
hsa-miR-429	   1.85	 0.007	 hsa-miR-28-5p	 0.62	 0.006
hsa-miR-19b	   1.83	 0	 hsa-miR-125b	 0.62	 0.002
hsa-miR-335	   1.78	 0.018	 hsa-miR-365	 0.66	 0
hsa-miR-1249	   1.75	 0.044	 hsa-let-7e	 0.66	 0.002
hsa-miR-141	   1.73	 0.035
hsa-miR-29a	   1.68	 0
hsa-miR-142-3p	   1.66	 0.016
hsa-miR-93	   1.66	 0
hsa-miR-663	   1.65	 0.002
hsa-miR-148b	   1.59	 0.033
hsa-miR-425	   1.58	 0.046
hsa-miR-25	   1.57	 0
hsa-miR-1280	   1.51	 0

RANOVA was used to identify miRNAs that were differentially expressed (1.5‑fold, p<0.05).
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colonic tissue. In addition, the relative level of miR-182 is also 
consistently higher in AA tumors compared to CA tumors in 
both the SBU and WU cohorts singularly and in combination. 
Interestingly, there is little or no difference in AA normal 
mucosa compared to the CA normal tissue.

Immunohistochemical analysis of potential miRNA targets. 
For further downstream analysis, we focused our attention 
on the potential targets of miR-182 (35,36). We reasoned that 
upregulation of miR-182 could result in reduced expression of 
target mRNAs. To test this hypothesis, immunohistochemical 

Figure 1. Confirmation by qRT-PCR analysis of miRNAs that were most differentially expressed. qRT-PCR analysis using primers for 25 of the most differentially 
expressed miRNAs were evaluated. Statistical significance was determined by RANOVA (p<0.05). Significance was as follows: (A) miR-182, CAN vs. AAT, CAT 
vs. AAT and AAN vs. AAT. (B) miR-183, CAN vs. AAT, CAT vs. AAT and AAT vs. AAN. (C) miR-135b, CAN vs. CAT and AAN vs. AAT. (D) miR-204, CAN 
vs. CAT and AAN vs. AAT. Abbreviations: CA, Caucasian American; AA, African American; T, tumor; and N, normal adjacent.

Table II. miRNAs with significant race:tumor interaction or both significant race and tumor main effects.

	 Race:tumor	 Race	 Tumor	 Source	 Source:race	 Source:tumor	 Source:race:tumor

miR-H1	 0.016	 0.225	 0.001	 0.16	 0.099	 0	 0.033
miR-210	 0.022	 0.226	 0.001	 0.074	 0.441	 0.297	 0.049
miR-128	 0.036	 0.754	 0.013	 0.001	 0.491	 0.8	 0.555
miR-200a	 0.048	 0.452	 0.022	 0.278	 0.974	 0.905	 0.262
miR-152	 0.57	 0.012	 0.014	 0.013	 0.671	 0.323	 0.444
miR -204	 0.948	 0.013	 0.004	 0.239	 0.288	 0.841	 0.325
miR-182	 0.959	 0.015	 0	 0.569	 0.074	 0.809	 0.856
miR-222	 0.665	 0.017	 0	 0	 0.332	 0.065	 0.196
miR-202	 0.164	 0.045	 0.017	 0	 0.018	 0.021	 0.661

The p-values for the effect of race, tumor, institutional source of the tissue and all first order interactions were determined using RANOVA (see 
Materials and methods). The threshold for significance was set as p<0.05.

Table III. RANOVA analysis of qRT-PCR analysis of selected miRNA expression relative to miR-191.

	 Race:tumor	 Race	 Tumor	 Source	 Source:race	 Source:tumor	 Source:race:tumor

hsa-miR-182	 0.001	 0.325	 0	 0	 0.905	 0.058	 0.266
hsa-miR-204	 0.439	 0.898	 0	 0.038	 0.028	 0.053	 0.788
hsa-miR-183	 0.048	 0.048	 0	 0.473	 0.473	 0.189	 0.943
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staining for two potential miR-182 targets, FOXO1 and 
FOXO3a, were performed on 10 of the 15 matching tissue 
sets from SBU CA and AA colon cancer patients (Fig. 3). 
SBU samples were solely used due to availability of samples 
for this analysis. FOXO1 and FOXO3a cytoplasmic staining 
was detected in all normal colon tissue samples regardless 
of race. In normal colonic mucosa, staining for both FOXO1 
and FOXO3a was most intense in luminal surface columnar 
cells, but colonic crypt epithelial cells also showed weak 
to moderate cytoplasmic staining. In tumors, FOXO1 was 
localized exclusively in the cytoplasm, but FOXO3a showed 

nuclear staining, potentially reflecting the translocation of 
phospho‑FOXO3a. The expression of FOXO1 decreased by 
57.14% in tumors of CAs and decreased by 83.33% in tumors 
of AAs as compared to adjacent normal tissues. Similarly, 
the extent of expression of FOXO3a decreased by 41.17% in 
tumors of CAs and decreased by 65.22% in tumors of AAs 
as compared to adjacent normal tissues. However, the trend 
towards reduced staining in AA tumors compared to CA did 
not reach statistical significance. Statistical significance was 
noted only when assessing differences in staining between 
normal and tumor tissues.

Figure 2. Three-way interactions between race (AA vs. CA) tumor (tumor vs. normal), and source (SBU vs. WU) for the miR-182 qRT-PCR data. Patients were 
classified into 8 groups (each group is determined by a combination of race, tumor and source) for their miR-182 relative expression level as measured by RT-PCR. 
For each data source, 4 associated group means were plotted in one figure, with a dot and triangle indicating race and an x-axis indicating normal and tumor. 
Additionally, the change in group means of CA patients between normal and tumor is signified by a solid line, while a dashed line represents this change in AA 
patients.

Figure 3. FOXO1 and FOXO3a staining in colon tumor and adjacent normal tissues. Immunohistochemical analysis of colon tissue from patients with colon 
cancer. Representative images (magnification, x400) of immunohistochemically stained tissues from patients of CA and AA origin are shown along with 
a corresponding graph depicting the intensity of staining. Vertical bars, standard error of the mean; n=10 for each group. The intensity of the staining was 
scored using the scale: 0, no staining; 1, low staining; 2, medium staining; and 3, strong staining. *p<0.05, **p<0.005, and ***p<0.001.
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Discussion

This exploratory study provides proof of principle for iden-
tifying biological factors that could contribute to increased 
mortality in CRC in AAs compared to CAs. Whole human 
genome miRNA expression profiles were compared between 
AA and CA paired colon cancer and adjacent normal colonic 
tissue. To increase the power of the analysis, samples were 
combined between two medical centers located, respectively, 
in New York City, NY and St. Louis, MO, with at least 
30 subjects per each racial cohort. The 2 cohorts were not 
significantly different with respect to distribution of age or 
gender. However, there were significant differences between 
the 2 cohorts with respect to the type of samples used: formalin 
fixed paraffin embedded tissues vs. snap frozen tissues.

One approach towards identifying candidate miRNAs 
could be to conduct a series of two class comparisons using 
SAM  (26); i)  compare paired tumor vs. adjacent normal; 
ii)  compare unpaired AA tumor with CA tumor; and 
iii)  compare unpaired AA normal with CA normal. The 
miRNAs that were differentially expressed in tumor vs. normal 
and between AA cancer and CA cancer would be selected as 
potential candidates. However, to simultaneously evaluate the 
effect of race, tumor and the institutional source as well as first 
order interaction terms we instead used RANOVA.

The largest differences in miRNA expression are between 
tumor and adjacent normal tissue. RANOVA identified 
miRNAs that were previously reported to be differentially 
expressed between tumor and normal colon tissue (14-19,29‑34). 
RANOVA identified nine miRNAs that exhibited either a 
race:tumor interaction or both race and tumor main effects. 
We focused on one miRNA that were initially identified by 
both SAM and RANOVA analysis in the SBU cohort and then 
confirmed in the analysis of the combined SBU and WU cohorts. 
Our main potential biomarker for indicating a role in racial 
disparity, miR-182, has been previously reported to be upregu-
lated in tumor vs. normal tissues. In addition, miR-204, which 
has been previously reported to be downregulated in tumors 
(29-34) was also considered as a potential biomarker. While 
subsequent qRT-PCR confirmed upregulation of miR-182 and 
downregulation of miR-204 in tumor vs. normal tissues, only 
miR-182 was confirmed as being increased in AA vs. CA tumor 
tissues. In agreement, analysis of miR-182 expression in the 
6 AA designated colon cancers and the 37 CA designated colon 
cancers in The Cancer Genome Atlas database also showed 
increased expression in the AA cancers, but this increase did 
not reach statistical significance (37). This could be due in part 
to the small sample number of AA colon cancer tissue. A recent 
RT-PCR analysis of selected miRNAs in AA and CA paired 
tumor and adjacent normal colon tissues detected an effect of 
race and colon cancer stage on expression; however, miR-182 
was not measured in this study (38). While the observation 
that miR-182 expression is increased in AA tumors, needs to 
be confirmed in larger samples sets and/or better annotation of 
racial metadata in existing collections, the results of this study 
suggests that variations in sample processing at different institu-
tions will not obscure racial differences in miRNA expression.

In accordance with the expression levels of miR-182, there 
were reduced expressions of FOXO3 and FOXO1 in tumor vs. 
normal tissues in the SBU cohort. Although expression levels 

were noted to differ between AA vs. CA tumors, this decreased 
expression was not statistically significant. These immuno-
histochemical results support a recent report of decreased 
FOXO3a (39) expression in CRC, and suggest that miR-182 
levels may contribute to the regulation of FOXO1 and FOXO3a 
expression. The concept that increased miR-182 levels in AA 
compared to CA levels may contribute to increased AA colon 
cancer mortality is further supported by a recent report linking 
miR-182 to reduced colon cancer survival and increased liver 
metastases (40). Targeted suppression of miR-182 expression 
has been reported to reduce hepatic metastases in an experi-
mental model of melanoma (41), suggesting that miR-182 is 
involved in promoting the development of liver metastases.

The molecular pathways leading AA colon cancer racial 
health disparity remain to be determined. We propose that this 
may be related to an increase of miR-182 in AA colon cancers. 
One potential link may be with defective mismatch repair (19). 
AAs with CRC (43%) have a higher proportion of MSI 
instability compared to the general US population (42). This 
instability may in turn be associated with altered prognosis 
and response to chemotherapeutic agents (42). Another may be 
epigenetic modulation of the miR-182 locus (43). Identification 
of the biological pathways associated with differential expres-
sion of miRNAs in AA cancers will, therefore, require the 
generation and integration of parallel genetic and epigenetic 
mRNA expression datasets with an expanded racially anno-
tated miRNA colon cancer dataset.
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