26 research outputs found

    Subsurface velocity structure and site amplification characteristics in Mashiki Town, Kumamoto Prefecture, Japan, inferred from microtremor and aftershock recordings of the 2016 Kumamoto earthquakes

    Get PDF
    In order to investigate the seismic velocity structure in the region of concentrated severe damage during the 2016 Kumamoto earthquake sequence, we conducted continuous seismic observations in the central area of Mashiki Town, Kumamoto Prefecture. During 4 days of observations at eight temporary sites, 2 months after the mainshock, recordings from 30 aftershocks (1.7 ≤ Mj ≤ 4.3, 1.9 km ≤ depth ≤ 13.5 km) were obtained. The aftershock data showed that site amplifications at approximately 1 Hz are dominant in a zone where almost no buildings were damaged along the Akitsu riverside, whereas site amplifications at higher than 3 Hz are observed in the heavily damaged zones. Our data also showed that the peak acceleration and velocity amplitudes, as well as seismic intensities for the small events in the less damaged zone, are clearly larger than those in the damaged zones, implying that the damage distribution is inconsistent with site response based on linear site amplifications. The estimated phase velocities of Rayleigh waves using the aftershock and microtremor data show dispersive characteristics in the lower frequency range (0.26 ≤ f ≤ 1.27 Hz), but the values are substantially smaller than those derived from the P–S logging model at the nearest KiK-net strong-motion observation station KMMH16. The derived microtremor horizontal-to-vertical spectral ratios and earthquake radial-to-vertical (R/V) spectral ratios show common distinct peaks at around 0.4 Hz, which are possibly related to the response of deep sedimentary layers beneath the area. The refined velocity structure model that better accounts for both the phase velocity and common dominant peak indicates that the values of S wave velocity (Vs) above the bedrock layer (Vs = 2700 m/s) are smaller than those inferred from the logging model and the depth to the bedrock layer could be much deeper (about 600 m) in comparison with the logging model (234 m). The derived R/V spectral ratio at station KMMH16 also shows a distinct peak at 0.4 Hz, suggesting that there is no large difference of deep sedimentary structure between the observation area and station KMMH16

    Total and High Molecular Weight Adiponectin and Hepatocellular Carcinoma with HCV Infection

    Get PDF
    Adiponectin is shown to be inversely associated with development and progression of various cancers. We evaluated whether adiponectin level was associated with the prevalence and histological grade of hepatocellular carcinoma (HCC), and liver fibrosis in patients with hepatitis C virus (HCV) infection.A case-control study was conducted on 97 HCC patients (cases) and 97 patients (controls) matched for sex, Child-Pugh grade and platelet count in patients with HCV infection. The serum total and high molecular weight (HMW) adiponectin levels were measured by enzyme-linked immunosorbent assays and examined in their association with the prevalence of HCC. In addition, the relationship between these adiponectin levels and body mass index (BMI), progression of liver fibrosis, and histological grade of HCC was also evaluated. Liver fibrosis was assessed using the aspartate aminotransferase to platelet ratio index (APRI).There were no significant differences in the serum total and HMW adiponectin levels between cases and controls. Moreover, there were no inverse associations between serum total and HMW adiponectin levels and BMI in both cases and controls. On the other hand, serum total and HMW adiponectin levels are positively correlated with APRI in both cases (r = 0.491, P<0.001 and r = 0.485, P<0.001, respectively) and controls (r = 0.482, P<0.001 and r = 0.476, P<0.001, respectively). Interestingly, lower serum total (OR 11.76, 95% CI: 2.97–46.66 [P<0.001]) and HMW (OR 10.24, CI: 2.80–37.40 [P<0.001] adiponectin levels were independent risk factors of worse histological grade of HCC.Our results suggested that serum total and HMW adiponectin levels were predictors of liver fibrosis, but not prevalence of HCC in patients with HCV infection. Moreover, low these adiponectin levels were significantly associated with worse histological grades

    Employment status and its associated factors for patients 12 months after intensive care: Secondary analysis of the SMAP-HoPe study

    Get PDF
    BackgroundReturning to work is a serious issue that affects patients who are discharged from the intensive care unit (ICU). This study aimed to clarify the employment status and the perceived household financial status of ICU patients 12 months following ICU discharge. Additionally, we evaluated whether there exists an association between depressive symptoms and subsequent unemployment status.MethodsThis study was a subgroup analysis of the published Survey of Multicenter Assessment with Postal questionnaire for Post-Intensive Care Syndrome for Home Living Patients (the SMAP-HoPe study) in Japan. Eligible patients were those who were employed before ICU admission, stayed in the ICU for at least three nights between October 2019 and July 2020, and lived at home for 12 months after discharge. We assessed the employment status, subjective cognitive functions, household financial status, Hospital Anxiety and Depression Scale, and EuroQOL-5 dimensions of physical function at 12 months following intensive care.ResultsThis study included 328 patients, with a median age of 64 (interquartile range [IQR], 52–72) years. Of these, 79 (24%) were unemployed 12 months after ICU discharge. The number of patients who reported worsened financial status was significantly higher in the unemployed group (p<0.01) than in the employed group. Multivariable analysis showed that higher age (odds ratio [OR], 1.06; 95% confidence interval [CI], 1.03–1.08]) and greater severity of depressive symptoms (OR, 1.13 [95% CI, 1.05–1.23]) were independent factors for unemployment status at 12 months after ICU discharge.ConclusionsWe found that 24.1% of our patients who had been employed prior to ICU admission were subsequently unemployed following ICU discharge and that depressive symptoms were associated with unemployment status. The government and the local municipalities should provide medical and financial support to such patients. Additionally, community and workplace support for such patients are warranted

    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020)

    Get PDF
    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members.As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.other authors: Satoru Hashimoto,Daisuke Hasegawa,Junji Hatakeyama,Naoki Hara,Naoki Higashibeppu,Nana Furushima,Hirotaka Furusono,Yujiro Matsuishi,Tasuku Matsuyama,Yusuke Minematsu,Ryoichi Miyashita,Yuji Miyatake,Megumi Moriyasu,Toru Yamada,Hiroyuki Yamada,Ryo Yamamoto,Takeshi Yoshida,Yuhei Yoshida,Jumpei Yoshimura,Ryuichi Yotsumoto,Hiroshi Yonekura,Takeshi Wada,Eizo Watanabe,Makoto Aoki,Hideki Asai,Takakuni Abe,Yutaka Igarashi,Naoya Iguchi,Masami Ishikawa,Go Ishimaru,Shutaro Isokawa,Ryuta Itakura,Hisashi Imahase,Haruki Imura,Takashi Irinoda,Kenji Uehara,Noritaka Ushio,Takeshi Umegaki,Yuko Egawa,Yuki Enomoto,Kohei Ota,Yoshifumi Ohchi,Takanori Ohno,Hiroyuki Ohbe,Kazuyuki Oka,Nobunaga Okada,Yohei Okada,Hiromu Okano,Jun Okamoto,Hiroshi Okuda,Takayuki Ogura,Yu Onodera,Yuhta Oyama,Motoshi Kainuma,Eisuke Kako,Masahiro Kashiura,Hiromi Kato,Akihiro Kanaya,Tadashi Kaneko,Keita Kanehata,Ken-ichi Kano,Hiroyuki Kawano,Kazuya Kikutani,Hitoshi Kikuchi,Takahiro Kido,Sho Kimura,Hiroyuki Koami,Daisuke Kobashi,Iwao Saiki,Masahito Sakai,Ayaka Sakamoto,Tetsuya Sato,Yasuhiro Shiga,Manabu Shimoto,Shinya Shimoyama,Tomohisa Shoko,Yoh Sugawara,Atsunori Sugita,Satoshi Suzuki,Yuji Suzuki,Tomohiro Suhara,Kenji Sonota,Shuhei Takauji,Kohei Takashima,Sho Takahashi,Yoko Takahashi,Jun Takeshita,Yuuki Tanaka,Akihito Tampo,Taichiro Tsunoyama,Kenichi Tetsuhara,Kentaro Tokunaga,Yoshihiro Tomioka,Kentaro Tomita,Naoki Tominaga,Mitsunobu Toyosaki,Yukitoshi Toyoda,Hiromichi Naito,Isao Nagata,Tadashi Nagato,Yoshimi Nakamura,Yuki Nakamori,Isao Nahara,Hiromu Naraba,Chihiro Narita,Norihiro Nishioka,Tomoya Nishimura,Kei Nishiyama,Tomohisa Nomura,Taiki Haga,Yoshihiro Hagiwara,Katsuhiko Hashimoto,Takeshi Hatachi,Toshiaki Hamasaki,Takuya Hayashi,Minoru Hayashi,Atsuki Hayamizu,Go Haraguchi,Yohei Hirano,Ryo Fujii,Motoki Fujita,Naoyuki Fujimura,Hiraku Funakoshi,Masahito Horiguchi,Jun Maki,Naohisa Masunaga,Yosuke Matsumura,Takuya Mayumi,Keisuke Minami,Yuya Miyazaki,Kazuyuki Miyamoto,Teppei Murata,Machi Yanai,Takao Yano,Kohei Yamada,Naoki Yamada,Tomonori Yamamoto,Shodai Yoshihiro,Hiroshi Tanaka,Osamu NishidaGuideline

    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020)

    Get PDF
    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members.other authors: Yasuhiro Norisue, Satoru Hashimoto, Daisuke Hasegawa, Junji Hatakeyama, Naoki Hara, Naoki Higashibeppu, Nana Furushima, Hirotaka Furusono, Yujiro Matsuishi, Tasuku Matsuyama, Yusuke Minematsu, Ryoichi Miyashita, Yuji Miyatake, Megumi Moriyasu, Toru Yamada, Hiroyuki Yamada, Ryo Yamamoto, Takeshi Yoshida, Yuhei Yoshida, Jumpei Yoshimura, Ryuichi Yotsumoto, Hiroshi Yonekura, Takeshi Wada, Eizo Watanabe, Makoto Aoki, Hideki Asai, Takakuni Abe, Yutaka Igarashi, Naoya Iguchi, Masami Ishikawa, Go Ishimaru, Shutaro Isokawa, Ryuta Itakura, Hisashi Imahase, Haruki Imura, Takashi Irinoda, Kenji Uehara, Noritaka Ushio, Takeshi Umegaki, Yuko Egawa, Yuki Enomoto, Kohei Ota, Yoshifumi Ohchi, Takanori Ohno, Hiroyuki Ohbe, Kazuyuki Oka, Nobunaga Okada, Yohei Okada, Hiromu Okano, Jun Okamoto, Hiroshi Okuda, Takayuki Ogura, Yu Onodera, Yuhta Oyama, Motoshi Kainuma, Eisuke Kako, Masahiro Kashiura, Hiromi Kato, Akihiro Kanaya, Tadashi Kaneko, Keita Kanehata, Ken-ichi Kano, Hiroyuki Kawano, Kazuya Kikutani, Hitoshi Kikuchi, Takahiro Kido, Sho Kimura, Hiroyuki Koami, Daisuke Kobashi, Iwao Saiki, Masahito Sakai, Ayaka Sakamoto, Tetsuya Sato, Yasuhiro Shiga, Manabu Shimoto, Shinya Shimoyama, Tomohisa Shoko, Yoh Sugawara, Atsunori Sugita, Satoshi Suzuki, Yuji Suzuki, Tomohiro Suhara, Kenji Sonota, Shuhei Takauji, Kohei Takashima, Sho Takahashi, Yoko Takahashi, Jun Takeshita, Yuuki Tanaka, Akihito Tampo, Taichiro Tsunoyama, Kenichi Tetsuhara, Kentaro Tokunaga, Yoshihiro Tomioka, Kentaro Tomita, Naoki Tominaga, Mitsunobu Toyosaki, Yukitoshi Toyoda, Hiromichi Naito, Isao Nagata, Tadashi Nagato, Yoshimi Nakamura, Yuki Nakamori, Isao Nahara, Hiromu Naraba, Chihiro Narita, Norihiro Nishioka, Tomoya Nishimura, Kei Nishiyama, Tomohisa Nomura, Taiki Haga, Yoshihiro Hagiwara, Katsuhiko Hashimoto, Takeshi Hatachi, Toshiaki Hamasaki, Takuya Hayashi, Minoru Hayashi, Atsuki Hayamizu, Go Haraguchi, Yohei Hirano, Ryo Fujii, Motoki Fujita, Naoyuki Fujimura, Hiraku Funakoshi, Masahito Horiguchi, Jun Maki, Naohisa Masunaga, Yosuke Matsumura, Takuya Mayumi, Keisuke Minami, Yuya Miyazaki, Kazuyuki Miyamoto, Teppei Murata, Machi Yanai, Takao Yano, Kohei Yamada, Naoki Yamada, Tomonori Yamamoto, Shodai Yoshihiro, Hiroshi Tanaka & Osamu Nishid

    Applications of Mesenchymal Stem Cells and Neural Crest Cells in Craniofacial Skeletal Research

    No full text
    Craniofacial skeletal tissues are composed of tooth and bone, together with nerves and blood vessels. This composite material is mainly derived from neural crest cells (NCCs). The neural crest is transient embryonic tissue present during neural tube formation whose cells have high potential for migration and differentiation. Thus, NCCs are promising candidates for craniofacial tissue regeneration; however, the clinical application of NCCs is hindered by their limited accessibility. In contrast, mesenchymal stem cells (MSCs) are easily accessible in adults, have similar potential for self-renewal, and can differentiate into skeletal tissues, including bones and cartilage. Therefore, MSCs may represent good sources of stem cells for clinical use. MSCs are classically identified under adherent culture conditions, leading to contamination with other cell lineages. Previous studies have identified mouse- and human-specific MSC subsets using cell surface markers. Additionally, some studies have shown that a subset of MSCs is closely related to neural crest derivatives and endothelial cells. These MSCs may be promising candidates for regeneration of craniofacial tissues from the perspective of developmental fate. Here, we review the fundamental biology of MSCs in craniofacial research

    Kinetic Study of the Scavenging Reaction of the Aroxyl Radical by Seven Kinds of Rice Bran Extracts in Ethanol Solution. Development of an Aroxyl Radical Absorption Capacity (ARAC) Assay Method

    No full text
    Recently, a new assay method that can quantify the aroxyl radical (ArO•) absorption capacity (ARAC) of antioxidants (AOHs) was proposed. In the present work, the second-order rate constants (<i>k</i><sub>s</sub><sup>Extract</sup>) and ARAC values for the reaction of ArO• with seven kinds of rice bran extracts 1–7, which contain different concentrations of α-, β-, γ-, and δ-tocopherols and -tocotrienols (α-, β-, γ-, and δ-Tocs and -Toc-3s) and γ-oryzanol, were measured in ethanol at 25 °C using stopped-flow spectrophotometry. The <i>k</i><sub>s</sub><sup>Extract</sup> value (1.26 × 10<sup>–2</sup> M<sup>–1</sup> s<sup>–1</sup>) of Nipponbare (extract 1) with the highest activity was 1.5 times larger than that (8.29 × 10<sup>–3</sup>) of Milyang-23 (extract 7) with the lowest activity. The concentrations (in mg/100 g) of α-, β-, γ-, and δ-Tocs and -Toc-3s and γ-oryzanol found in the seven extracts 1–7 were determined using HPLC-MS/MS and UV–vis absorption spectroscopy, respectively. From the results, it has been clarified that the ArO•-scavenging rates (<i>k</i><sub>s</sub><sup>Extract</sup>) (that is, the relative ARAC value) obtained for the seven extracts 1–7 may be approximately explained as the sum of the product {Σ <i>k</i><sub>s</sub><sup>AOH‑<i>i</i></sup> [AOH-<i>i</i>]/10<sup>5</sup>} of the rate constant (<i>k</i><sub>s</sub><sup>AOH‑<i>i</i></sup>) and the concentration ([AOH-<i>i</i>]/10<sup>5</sup>) of AOH-<i>i</i> (Tocs, Toc-3s, and γ-oryzanol) included in rice bran extracts. The contribution of γ-oryzanol to the <i>k</i><sub>s</sub><sup>Extract</sup> value was estimated to be between 3.0–4.7% for each extract. Taken together, these results suggest that the ARAC assay method is applicable to general food extracts
    corecore