11 research outputs found

    Using GES DISC Data to Study Kilauea Volcano of 2018

    Get PDF
    Kilauea volcano in Hawaii which erupted in early May 2018 injected massive amount of SO2 and ash into the atmosphere. The lava flow during the eruption destroyed many home and neighborhoods. The SO2 plume during the eruption of Kilauea volcano is analyzed from May to August 2018 using multiple satellite products such as Level 2 TROPspheric Monitoring Instrument (TROPOMI) and Level 3 Ozone Monitoring Instrument (OMI) from the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). GES DISC hosts multi-disciplinary Earth science data sets that can be used to analyze natural disasters, such as the Kilauea volcano. Additionally, GES DISC's Giovanni tool can be used to visualize these data. We acquired OMI through the subsetting function, which is processed by the GES DISC in-house developed backend software Level3/4 Regrider and Subsetter (L34RS) and TROPOMI using OPeNDAP.Data from the OMI OMSO2e product showed elevated levels of SO2 amounts during the eruption between May to August 2018. Similarly, ground-based stations at Hawaii Volcanoes National Park recorded higher SO2 concentrations during the same time period. This study uses wind direction from Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) to analyze the transport and dispersion of SO2 plume and map lava flows from the volcano using thermal images from Visible Infrared Imaging Radiometer Suite (VIIRS). Furthermore, satellite observations combined with socioeconomic and public health data are used to analyze its impact in public health

    Studying Diurnal Variations of Aerosols with NASA MERRA-2 Reanalysis Data

    Get PDF
    Aerosols play an important role in atmospheric dynamics, climate variations, and Earth's energy cycle by altering the radiation balance in the atmosphere through interaction with clouds, providing fertilizer for forests and canopy, and as a supply of iron to the ocean over long time periods. Studies suggest that much of the feedback between dust aerosols and dynamics is associated with diurnal and synoptic scale variability. However, the lack of sub-daily resolution of aerosols from satellite observations makes it difficult to study the diurnal characteristics, especially over tropical and subtropical regions. Investigation of this topic utilizes over 37 years of simulated global aerosol products from NASA atmospheric reanalysis, in the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) data set, available from NASA Goddard Earth Science Data and Information Services Center (GES DISC). MERRA-2 covers the period 1980-present, and is continuing as an ongoing climate analysis. Aerosol assimilation is included throughout the period, using data from MODIS, MISR, AERONET, and AVHRR (in the pre-EOS period). The aerosols are assimilated using the MERRA-2 aerosol model, which interacts directly with radiation parameterization, and is radiatively coupled with atmospheric model dynamics in the Goddard Earth Observing System Model, Version 5 (GEOS-5). Hourly, monthly, and monthly diurnal data are available at spatial resolution of 0.5o x 0.625o (latitude x longitude). By using MERRA-2 hourly and monthly diurnal products, different aerosol diurnal variabilities are observed over North America, Africa, Asia, and Australia, that may be due to different meteorological conditions and aerosol sources. The presentation will also provide an overview of MERRA-2 data services at GES DISC, such as how to find and download data, and how to quickly visualize and analyze data online with Giovanni

    Investigating Access Performance of Long Time Series with Restructured Big Model Data

    Get PDF
    Data sets generated by models are substantially increasing in volume, due to increases in spatial and temporal resolution, and the number of output variables. Many users wish to download subsetted data in preferred data formats and structures, as it is getting increasingly difficult to handle the original full-size data files. For example, application research users such as those involved with wind or solar energy, or extreme weather events are likely only interested in daily or hourly model data at a single point (or for a small area) for a long time period, and prefer to have the data downloaded in a single file. With native model file structures, such as hourly data from NASA Modern-Era Retrospective analysis for Research and Applications Version-2 (MERRA-2), it may take over 10 hours for the extraction of parameters-of-interest at a single point for 30 years. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is exploring methods to address this particular user need. One approach is to create value-added data by reconstructing the data files. Taking MERRA-2 data as an example, we have tested converting hourly data from one-day-per-file into different data cubes, such as one-month, or one-year. Performance is compared for reading local data files and accessing data through interoperable services, such as OPeNDAP. Results show that, compared to the original file structure, the new data cubes offer much better performance for accessing long time series. We have noticed that performance is associated with the cube size and structure, the compression method, and how the data are accessed. An optimized data cube structure will not only improve data access, but also may enable better online analysis service

    Restructuring Big Data to Improve Data Access and Performance in Analytic Services Making Research More Efficient for the Study of Extreme Weather Events and Application User Communities

    Get PDF
    By developing and enhancing various services and tools, the GES DISC provides users with the capability to access and visualize data, and to make comparisons of data from multiple sensor and models via a number of cross-discipline projects. Discovering Data via Faceted Web Interface Web interface to data products and services Search and Download mechanisms Dataset Landing Pages Accessing Data through Interoperable Services: GDS GrADS Data Server OPeNDAP - Open-source Project for a Network Data Access Protocol WMS OGC service GIS connector allowing IS tools to access data easier (coming soon) HTTPS -- direct online access Downloading Data Basics: Subset and egridding Service Parameter, Spatial, Time, Vertical, Mean averaging, format conversion, and regridding for L3/L4 gridded data Swath Data Subsetter Parameter, spatial subset of L2 /L1 data. Visualizing Data Online: Giovanni Visualization and Analysis L3/L4 gridded data AIRS NRT Viewer AIRS near-real-time DQVis L2 data quality visualizatio

    Air Quality Satellite Monitoring by TROPOMI on Sentinel-5P

    Get PDF
    The recently launched Sentinel satellite mission, the Sentinel-5 Precursor (Sentinel-5P), is one of the European Space Agency's (ESA) new mission family Sentinels. The sole payload on Sentinel-5P is the TROPOspheric Monitoring Instrument (TROPOMI), a nadir-viewing 108 field-of-view push-broom grating hyperspectral spectrometer, covering the wavelengths of ultraviolet-visible (270 nm - 495 nm), near infrared (675 nm - 775 nm), and shortwave infrared (2305 nm - 2385 nm). Sentinel-5P is the first of the Atmospheric Composition Sentinels, and is providing measurements of atmospheric chemistry, aerosols, and clouds at high spatial, temporal, and spectral resolution. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) supports over a thousand data collections in the focus areas of Atmospheric Composition, Water & Energy Cycles, and Climate Variability. Sentinel-5P TROPOMI Level-1B (L1B) and Level-2 (L2) products are curated at the GES DISC. Sentinel-5P data are provided by the European Union and the European Space Agency (ESA) through an agreement between ESA and NASA. Through its convenient and enhanced tools/services, such as OPeNDAP and L2 Subsetting, GES DISC offers the air quality remote sensing user community facile solutions for using complex Earth science data and applications. This presentation will demonstrate up-to-date TROPOMI products including EarthView (EV) radiance, solar irradiance, Aerosol Index, Carbon Monoxide, Total column Ozone, Nitrogen Dioxide, and cloud, as well as easy ways to access, visualize and subset TROPOMI data

    Long Term Potential Evapotranspiration and Evapotranspiration Data and Services at NASA GES DISC

    Get PDF
    Recently, the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has released global land 3-hourly Potential Evapotranspiration and Supporting Forcing Data Version-1 (PET_PU_3H025.001), at 0.25x0.25 degree spatial resolution, spanning the 23 year period from 1984 to 2006. The Version-2 will be released in the near future, covering longer time period. This dataset was generated by Professor Justin Sheffield through NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) project. Potential evapotranspiration (PET) is a representation of the environmental demand for evapotranspiration (ET). ET and PET are important part of the global water cycle estimation, and are also critical to advance our understanding of the climate system. NASA GES DISC archives and distributes various global and regional ET datasets from several projects, for example, Land Data Assimilation System (LDAS), Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), other MEaSUREs Projects, such as Land Surface Atmospheric Boundary Interaction Product by William Rossow; and SRB/GEWEX evapotranspiration (Penman-Monteith) by Eric F. Wood. In this presentation, we will overview all available PET and ET datasets and services at GES DISC. As examples, climatology and some seasonal characteristics of PET and selected ET will be shown. The data can be accessed from NASA GES DISC (https://disc.gsfc.nasa.gov/) by searching keyword "evapotranspiration"

    Assimilated Hydrological Data at NASA GES DISC with Examples of Extreme Events

    Get PDF
    Extreme weather and climate events, such as heavy rainfall, heatwave, floods and droughts, and strong wind, can have devastating impacts on society. NASA and NOAA, based on independent analyses, recently announced that global surface temperatures in 2018 are the fourth warmest since 1880, behind only those of 2016, 2017, and 2015 (nasa.gov). Also in 2018, the United States experienced 14 billion-dollar disasters, ranking as the fourth highest total number of such events, behind only the years 2017, 2011, and 2016 (climate.gov). Many research studies have focused on acquiring observational and modeling data, to reveal linkages between increasing extreme events, global water and energy cycle, and global climate change. However, draw conclusions is still a challenge. NASA Goddard Earth Sciences Data and Information Services Center is one of twelve NASA Earth Observing System (EOS) data centers that process, archive, document, and distribute data from Earth science missions and related projects. The GES DISC hosts a wide range of remotely-sensed and model data and provides reliable and robust data access and services to users worldwide. This presentation provides a few examples of extreme event study that use Land Surface Model (LSM) assimilated, quality-controlled, and spatially and temporally consistent, hydrological data from the GES DISC. Also provided is a summary table for the hydrological data holdings, along with discussions of recent updates to data and data services

    Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (LDAS) and Other Assimilated Hydrological Data at NASA GES DISC

    Get PDF
    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) provides science support for several data sets relevant to agriculture and food security, including the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (LDAS), or FLDAS data set. The GES DISC is one of twelve NASA Earth Observing System (EOS) data centers that process, archive, document, and distribute data from Earth science missions and related projects. The GES DISC hosts a wide range of remote sensing and model data, and provides reliable and robust data access and other services to users worldwide. Beyond data archive and access, the GES DISC offers many services to visualize and analyze the data. This presentation provides a summary of the hydrological data available at the GES DISC, along with an overview of related data services. Specifically, the FLDAS data set has been adapted to work with domains, data streams, and monitoring and forecast requirements associated with food security assessment in data-sparse, developing country settings. The FLDAS global monthly data have a 0.1 x 0.1 degree spatial resolution covering the period from January 1982 to present. Global FLDAS monthly anomaly and monthly climatology data are also available at the GES DISC to evaluate how current conditions compare to averages over the FLDAS 35-year period. Several case studies using the FLDAS soil moisture, evapotranspiration, rainfall, runoff, and surface temperature data will be presented

    Global Long-Term SeaWiFS Deep Blue Aerosol Products available at NASA GES DISC

    Get PDF
    Long-term climate data records about aerosols are needed in order to improve understanding of air quality, radiative forcing, and for many other applications. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) provides a global well-calibrated 13- year (1997-2010) record of top-of-atmosphere radiance, suitable for use in retrieval of atmospheric aerosol optical depth (AOD). Recently, global aerosol products derived from SeaWiFS with Deep Blue algorithm (SWDB) have become available for the entire mission, as part of the NASA Making Earth Science data records for Use in Research for Earth Science (MEaSUREs) program. The latest Deep Blue algorithm retrieves aerosol properties not only over bright desert surfaces, but also vegetated surfaces, oceans, and inland water bodies. Comparisons with AERONET observations have shown that the data are suitable for quantitative scientific use [1],[2]. The resolution of Level 2 pixels is 13.5x13.5 km2 at the center of the swath. Level 3 daily and monthly data are composed by using best quality level 2 pixels at resolution of both 0.5ox0.5o and 1.0ox1.0o. Focusing on the southwest Asia region, this presentation shows seasonal variations of AOD, and the result of comparisons of 5-years (2003- 2007) of AOD from SWDB (Version 3) and MODIS Aqua (Version 5.1) for Dark Target (MYD-DT) and Deep Blue (MYD-DB) algorithms

    Sentinel-5P/TROPOMI and S-NPP/OMPS Data Support at GES DISC

    Get PDF
    The TROPspheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor (Sentinel-5P) is the first of the Atmospheric Composition Sentinels by the European Space Agency (ESA) that provides measurements of ozone, NO2, SO2, CH4, CO, formaldehyde, aerosols and cloud at high spatial, temporal and spectral resolutions. The early afternoon orbit of Sentinel-5P mission provides a strong synergy with the U.S. Suomi National Polar-orbiting Partnership (S-NPP) satellite, especially in that the S-NPP Ozone Monitoring and Profiling Suite (OMPS) facilitates high vertically resolved stratospheric and lower mesospheric ozone profiles. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) supports over a thousand data collections in the Focus Areas of Atmospheric Composition, Water & Energy Cycles, and Climate Variability and it is the Distributed Active Archive Center (DAAC) that is curating both offline Sentinel-5P TROPOMI and S-NPP OMPS Level-1B (L1B) and Level-2 (L2) products. Through its convenient and enhanced tools/services such as OPeNDAP and L2 Subsetting, GES DISC offers air quality remote sensing user communities facile solutions for complex Earth science data and applications. This presentation will demonstrate TROPOMI and OMPS products including earthview radiance, solar irradiance, and currently available L2 datasets, as well as easy ways to access, visualize and subset data. The implementation of the End User License Agreement (EULA) between NASA GES DISC and all data users accessing data at GES DISC will be emphasized as well
    corecore