1,450 research outputs found

    AL 3 (BH 261): a new globular cluster in the Galaxy

    Get PDF
    AL~3 (BH 261), previously classified as a faint open cluster candidate, is shown to be a new globular cluster in the Milky Way, by means of B, V and I Color-Magnitude Diagrams. The main feature of AL~3 is a prominent blue extended Horizontal Branch. Its Color-Magnitude Diagrams match those of the intermediate metallicity cluster M~5. The cluster is projected in a rich bulge field, also contaminated by the disk main sequence. The globular cluster is located in the Galactic bulge at a distance from the Sun d⊙_{\odot} = 6.0±\pm0.5 kpc. The reddening is E(B-V)=0.36±\pm0.03 and the metallicity is estimated to be [Fe/H] ≈\approx -1.3±\pm0.25. AL~3 is probably one of the least massive globular clusters of the Galaxy.Comment: 6 figures. Astrophysical Journal Letters, in pres

    Capture of field stars by globular clusters in dense bulge regions

    Get PDF
    The recent detection of a double Red Giant Branch in the optical color-magnitude diagram (CMD) of the bulge globular cluster HP1 (Ortolani et al. 1997), a more populated metal-poor steep one corresponding to the cluster itself, and another metal-rich curved, led us to explore in the present Letter the possibility of capture of field stars by a globular cluster orbiting in dense bulge regions over several gigayears. Analytical arguments, as well as N-body calculations for a cluster model of 10^5 solar masses in a bulge-like environment, suggest that a significant fraction of cluster stars may consist of captures. Metal-poor globular clusters in the inner bulge, like HP1, contrasting at least in Delta [Fe/H] = 1.0 dex with respect to the surrounding metal-rich stars, are ideal probes to further test the capture scenario. In turn, if this scenario is confirmed, the double RGB of HP1 could provide direct estimates of blanketing amounts, which is fundamental for the photometric calibration of metal-rich stellar populations.Comment: 6 pages, 2 included figures, aas2pp4,sty Latex style. To be published in Astrophysical Journal Letter

    Near Infrared properties of 12 Globular Clusters toward the inner Bulge of the Galaxy

    Full text link
    We present near-IR Colour-Magnitude diagrams and physical parameters for a sample of 12 galactic globular clusters located toward the inner Bulge region. For each cluster we provide measurements of the reddening, distance, photometric metallicity, luminosity of the horizontal branch red clump, and of the red giant branch bump and tip. The sample discussed here together with that presented in Valenti, Ferraro & Origlia (2007) represent the largest homogeneous catalog of Bulge globular clusters (comprising ~ 80% of the entire Bulge cluster population) ever studied. The compilation is available in electronic form on the World Wide Web (http://www.bo.astro.it/~GC/ir_archive)Comment: 2 pages, 13 figures, 4 tables, accepted for publication in MNRA

    HST NICMOS Photometry of the reddened bulge globular clusters NGC 6528, Terzan 5, Liller 1, UKS 1 and Terzan 4

    Get PDF
    We present results from NICMOS Hubble Space Telescope observations of the reddened bulge globular clusters NGC 6528, Terzan 5, Liller 1, UKS 1 and Terzan 4, obtained through the filters F110W and F160W (nearly equivalent to J and H). For the first time the turnoff region of Liller 1 and the main sequence of Terzan 5 and Terzan 4 are reached, as well as the horizontal branch of UKS 1. The magnitude difference between the turnoff and the red horizontal branch Δm110=m110HB−m110TO\Delta m_{110}=m_{110}^{HB}- m_{110}^{TO} is used as an age indicator. From comparisons with new isochrones in the NICMOS photometric system, we conclude that the two metal-rich clusters NGC 6528 and Terzan 5 are coeval within uncertainties (∌20\sim 20%) with 47 Tucanae. Liller 1 and UKS 1 are confirmed as metal-rich globular clusters. Terzan 4 is confirmed as an interesting case of a metal-poor cluster in the bulge with a blue horizontal branch.Comment: 7 pages, 6 figures, accepted for publication in A&

    V, J, H and K Imaging of the Metal Rich Globular Cluster NGC 6528

    Full text link
    New near-infrared observations of NGC6528 are presented. The JHK observations complement a previous HST/NICMOS data set by Ortolani et al. (2001), in that they sample a larger area, contain a more numerous sample of red giant stars, and include the K band. Also, archival HST data sets (separated by 6.093 years) were used to proper-motion decontaminate the near-infrared sample and extract a clean VJHK catalogue. Using the present wide colour baseline, we compared the cleaned colour-magnitude diagrams of NGC6528 with those of NGC 6553 and NGC104 and derived new estimates of reddening and distance, E(B-V)=0.55 and (m-M)o=14.44 (7.7 kpc). Moreover, the morphology and location of the cleaned red giant branch were used to derive a photometric estimate of the cluster metallicity. The average of 10 metallicity indicators yields a mean value of [M/H] ~ 0.0, and [Fe/H] ~-0.20 and +0.08 on the Zinn & West (1984) and Carretta & Gratton (1997) revised metallicity scale, respectively. The best isochrone fit to the cleaned K,V-K diagram is obtained for a 12.6 Gyr and Z=0.02 isochrone, i.e. the derived metallicity of NGC6528 turns out to be very close to the mean of stars in the Baade's Window. Five AGB variable star candidates, whose membership has to be confirmed spectroscopically, are bolometrically as bright as the known long period variable stars in NGC6553. As discussed in Guarnieri et al. (1997) for NGC6553, this may indicate that an `intermediate age' population is not needed to account for the brightest stars in external galaxies such as M32.Comment: 11 pages, 9 figures, A&A accepte

    An Abundance Analysis for Five Red Horizontal Branch Stars in the Extremely Metal Rich Globular Cluster NGC 6553

    Get PDF
    We provide a high dispersion line-by-line abundance analysis of five red HB stars in the extremely metal rich galactic globular cluster NGC 6553. These red HB stars are significantly hotter than the very cool stars near the tip of the giant branch in such a metal rich globular cluster and hence their spectra are much more amenable to an abundance analysis than would be the case for red giants. We find that the mean [Fe/H] for NGC 6553 is -0.16 dex, comparable to the mean abundance in the galactic bulge found by McWilliam & Rich (1994) and considerably higher than that obtained from an analysis of two red giants in this cluster by Barbuy etal (1999). The relative abundance for the best determined alpha process element (Ca) indicates an excess of alpha process elements of about a factor of two. The metallicity of NGC 6553 reaches the average of the Galactic bulge and of the solar neighborhood.Comment: 29 pages, 6 figures, accepted for publication in the Ap

    Near-Infrared photometry of four metal-rich Bulge globular clusters: NGC6304, NGC6569, NGC6637, NGC6638

    Full text link
    We present high-quality near-Infrared photometry of four Bulge metal-rich globular clusters, namely: NGC 6304, NGC 6569, NGC 6637 and NGC 6638. By using the observed Colour-Magnitude Diagrams we derived a photometric estimates of the cluster reddening and distance. We performed a detailed analysis of the Red Giant Branch, presenting a complete description of morphologic parameters and evolutionary features (Bump and Tip). Photometric estimates of the cluster metallicity have been obtained by using the updated set of relations (published by our group) linking the metal abundance to a variety of near-Infrared indices measured along the Red Giant Branch. The detection of the Red Giant Branch Bump and the Tip is also presented and briefly discussed.Comment: 12 pages, 15 figures, accepted for publication in MNRA

    Kinematics of the Galactic Globular Cluster System: New Radial Velocities for Clusters in the Direction of the Inner Galaxy

    Get PDF
    HIRES on the Keck I telescope has been used to measure the first radial velocities for stars belonging to eleven, heavily-reddened globular clusters in the direction of the inner Galaxy. The question of kinematic substructuring among the Galactic globular cluster system is investigated using an updated catalog of globular cluster distances, metallicities and velocities. It is found that the population of metal-rich globular clusters shows significant rotation at all Galactocentric radii. For the metal-rich clusters within 4 kpc of the Galactic center, the measured rotation velocity and line-of-sight velocity dispersion are similar to those of bulge field stars. We investigate claims that the metal-rich clusters are associated with the central Galactic bar by comparing the kinematics of the innermost clusters to that of the atomic hydrogen in the inner Galaxy. The longitude-velocity diagram of both metal-rich and metal-poor clusters bears a remarkable similarity to that of the gas, including the same non-circular motions which have traditionally been interpreted as evidence for a Galactic bar, or, alternatively, a non-axisymmetric bulge. However, uncertainties in the existing three-dimensional Galactocentric positions for most of the clusters do not yet allow an unambiguous discrimination between the competing scenarios of membership in a rigidly rotating bar, or in a bulge which is an oblate isotropic rotator. We conclude that the majority of metal-rich clusters within the central 4 kpc of the Galaxy are probably associated with the bulge/bar, and not the thick disk. (ABRIDGED)Comment: 18 pages, including 7 of 13 postscript figures. Figures 1-6 available at http://astro.caltech.edu/~pc. Accepted for publication in the Astronomical Journa
    • 

    corecore