9,259 research outputs found

    Quasinormal frequencies of asymptotically flat two-dimensional black holes

    Full text link
    We discuss whether the minimally coupled massless Klein-Gordon and Dirac fields have well defined quasinormal modes in single horizon, asymptotically flat two-dimensional black holes. To get the result we solve the equations of motion in the massless limit and we also calculate the effective potentials of Schrodinger type equations. Furthermore we calculate exactly the quasinormal frequencies of the Dirac field propagating in the two-dimensional uncharged Witten black hole. We compare our results on its quasinormal frequencies with other already published.Comment: 12 pages. Accepted for publication in Gen. Rel. and Gra

    The oxygen abundance in the IFU era

    Full text link
    Spatially-resolved information of gas-phase emission provided by integral field units (IFUs) are allowing us to perform a new generation of emission-line surveys, based on large samples of HII regions and full two-dimensional coverage. Here we present two highlights of our current studies employing this technique: 1) A statistical approach to the abundance gradients of spiral galaxies, which indicates an -universal- radial gradient for oxygen abundance; and 2) The discovery of a new scaling relation of HII regions in spiral galaxies, the "local" mass-metallicity relation of star-forming galaxies.Comment: 6 pages, to appear in Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society held on July 9-13, 2012, in Valencia, Spai

    Semiconductor cavity QED: Bandgap induced by vacuum fluctuations

    Full text link
    We consider theoretically a semiconductor nanostructure embedded in one-dimensional microcavity and study the modification of its electron energy spectrum by the vacuum fluctuations of the electromagnetic field. To solve the problem, a non-perturbative diagrammatic approach based on the Green's function formalism is developed. It is shown that the interaction of the system with the vacuum fluctuations of the optical cavity opens gaps within the valence band of the semiconductor. The approach is verified for the case of large photon occupation numbers, proving the validity of the model by comparing to previous studies of the semiconductor system excited by a classical electromagnetic field. The developed theory is of general character and allows for unification of quantum and classical descriptions of the strong light-matter interaction in semiconductor structures

    Inner and outer star forming regions over the disks of spiral galaxies. I. Sample characterization

    Full text link
    Context. The knowledge of abundance distributions is central to understanding the formation and evolution of galaxies. Most of the relations employed for the derivation of gas abundances have so far been derived from observations of outer disk HII regions, despite the known differences between inner and outer regions. Aims. Using integral field spectroscopy (IFS) observations we aim to perform a systematic study and comparison of two inner and outer HII regions samples. The spatial resolution of the IFS, the number of objects and the homogeneity and coherence of the observations allow a complete characterization of the main observational properties and differences of the regions. Methods. We analyzed a sample of 725 inner HII regions and a sample of 671 outer HII regions, all of them detected and extracted from the observations of a sample of 263 nearby, isolated, spiral galaxies observed by the CALIFA survey. Results. We find that inner HII regions show smaller equivalent widths, greater extinction and luminosities, along with greater values of [NII]{\lambda}6583/H{\alpha} and [OII]{\lambda}3727/[OIII]{\lambda}5007 emission-line ratios, indicating higher metallicites and lower ionization parameters. Inner regions have also redder colors and higher photometric and ionizing masses, although Mion/Mphot is slighty higher for the outer regions. Conclusions. This work shows important observational differences between inner and outer HII regions in star forming galaxies not previously studied in detail. These differences indicate that inner regions have more evolved stellar populations and are in a later evolution state with respect to outer regions, which goes in line with the inside-out galaxy formation paradigm.Comment: 16 page

    PPAK Wide-field Integral Field Spectroscopy of NGC 628: II. Emission line abundance analysis

    Full text link
    In this second paper of the series, we present the 2-dimensional (2D) emission line abundance analysis of NGC 628, the largest object within the PPAK Integral Field Spectroscopy (IFS) Nearby Galaxies Survey: PINGS. We introduce the methodology applied to the 2D IFS data in order to extract and deal with large spectral samples, from which a 2D abundance analysis can be later performed. We obtain the most complete and reliable abundance gradient of the galaxy up-to-date, by using the largest number of spectroscopic points sampled in the galaxy, and by comparing the statistical significance of different strong-line metallicity indicators. We find features not previously reported for this galaxy that imply a multi-modality of the abundance gradient consistent with a nearly flat-distribution in the innermost regions of the galaxy, a steep negative gradient along the disc and a shallow gradient or nearly-constant metallicity beyond the optical edge of the galaxy. The N/O ratio seems to follow the same radial behaviour. We demonstrate that the observed dispersion in metallicity shows no systematic dependence with the spatial position, signal-to-noise or ionization conditions, implying that the scatter in abundance for a given radius is reflecting a true spatial physical variation of the oxygen content. Furthermore, by exploiting the 2D IFS data, we were able to construct the 2D metallicity structure of the galaxy, detecting regions of metal enhancement, and showing that they vary depending on the choice of the metallicity estimator. The analysis of axisymmetric variations in the disc of NGC 628 suggest that the physical conditions and the star formation history of different-symmetric regions of the galaxy have evolved in a different manner.Comment: Accepted for publication in MNRAS, 40 pages, 22 figures, online data: http://www.ast.cam.ac.uk/ioa/research/ping
    • …
    corecore