416 research outputs found

    Physiological evidence for plasticity in glycolate/glycerate transport during photorespiration

    Get PDF
    © 2016, The Author(s). Photorespiration recycles fixed carbon following the oxygenation reaction of Ribulose, 1–5, carboxylase oxygenase (Rubisco). The recycling of photorespiratory C2 to C3 intermediates is not perfectly efficient and reduces photosynthesis in C3 plants. Recently, a plastidic glycolate/glycerate transporter (PLGG1) in photorespiration was identified in Arabidopsis thaliana, but it is not known how critical this transporter is for maintaining photorespiratory efficiency. We examined a mutant deficient in PLGG1 (plgg1-1) using modeling, gas exchange, and Rubisco biochemistry. Under low light (under 65 μmol m−2 s−1 PAR), there was no difference in the quantum efficiency of CO2 assimilation or in the photorespiratory CO2 compensation point of plgg1-1, indicating that photorespiration proceeded with wild-type efficiency under sub-saturating light irradiances. Under saturating light irradiance (1200 μmol m−2 s−1 PAR), plgg1-1 showed decreased CO2 assimilation that was explained by decreases in the maximum rate of Rubisco carboxylation and photosynthetic linear electron transport. Decreased rates of Rubisco carboxylation resulted from probable decreases in the Rubisco activation state. These results suggest that glycolate/glycerate transport during photorespiration can proceed in moderate rates through an alternative transport process with wild-type efficiencies. These findings also suggest that decreases in net CO2 assimilation that occur due to disruption to photorespiration can occur by decreases in Rubisco activity and not necessarily decreases in the recycling efficiency of photorespiration

    Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field

    Get PDF
    y © The Authors, some rights reserved Photorespiration is required in C3 plants to metabolize toxic glycolate formed when ribulose-1,5-bisphosphate carboxylase-oxygenase oxygenates rather than carboxylates ribulose-1,5-bisphosphate. Depending on growing temperatures, photorespiration can reduce yields by 20 to 50% in C3 crops. Inspired by earlier work, we installed into tobacco chloroplasts synthetic glycolate metabolic pathways that are thought to be more efficient than the native pathway. Flux through the synthetic pathways was maximized by inhibiting glycolate export from the chloroplast. The synthetic pathways tested improved photosynthetic quantum yield by 20%. Numerous homozygous transgenic lines increased biomass productivity by \u3e40% in replicated field trials. These results show that engineering alternative glycolate metabolic pathways into crop chloroplasts while inhibiting glycolate export into the native pathway can drive increases in C3 crop yield under agricultural field conditions

    Optimizing photorespiration for improved crop productivity

    Get PDF
    © 2018 Institute of Botany, Chinese Academy of Sciences In C3 plants, photorespiration is an energy-expensive process, including the oxygenation of ribulose-1,5-bisphosphate (RuBP) by ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the ensuing multi-organellar photorespiratory pathway required to recycle the toxic byproducts and recapture a portion of the fixed carbon. Photorespiration significantly impacts crop productivity through reducing yields in C3 crops by as much as 50% under severe conditions. Thus, reducing the flux through, or improving the efficiency of photorespiration has the potential of large improvements in C3 crop productivity. Here, we review an array of approaches intended to engineer photorespiration in a range of plant systems with the goal of increasing crop productivity. Approaches include optimizing flux through the native photorespiratory pathway, installing non-native alternative photorespiratory pathways, and lowering or even eliminating Rubisco-catalyzed oxygenation of RuBP to reduce substrate entrance into the photorespiratory cycle. Some proposed designs have been successful at the proof of concept level. A plant systems-engineering approach, based on new opportunities available from synthetic biology to implement in silico designs, holds promise for further progress toward delivering more productive crops to farmer\u27s fields

    The positive impact of agile retrospectives on the collaboration of distributed development teams – A practical approach on the example of Bosch engineering GmbH

    Get PDF
    To counteract competitive pressure, increasing customer requirements and growing product complexity successful distributed collaboration in product development is vital. Companies have to face new challenges, such as efficiency losses in communication. To overcome these challenges agile working practices, such as agile retrospectives, could be beneficial. The objective of this scientific work is to evaluate the benefit of agile working practices on the example of agile retrospectives, for the improvement of collaboration in distributed development teams. Based on literature analysis, qualitative and quantitative expert interviews following the DRM by Blessing and Chakrabarti, this scientific work shows that agile working practices have a high potential to improve distributed collaboration. To address this potential, several virtual agile retrospectives are developed and conducted within a distributed team at Bosch Engineering GmbH. The evaluation of this approach results in a high potential of agile retrospectives indicating an improvement tendency. Especially iteratively implemented virtual agile retrospectives have a positive impact on successful distributed collaboration

    Bile acid sodium symporter BASS6 can transport glycolate and is involved in photorespiratory metabolism in Arabidopsis thaliana

    Get PDF
    © 2017, American Society of Plant Biologists. All rights reserved. Photorespiration is an energy-intensive process that recycles 2-phosphoglycolate, a toxic product of the Rubisco oxygenation reaction. The photorespiratory pathway is highly compartmentalized, involving the chloroplast, peroxisome, cytosol, and mitochondria. Though the soluble enzymes involved in photorespiration are well characterized, very few membrane transporters involved in photorespiration have been identified to date. In this work, Arabidopsis thaliana plants containing a T-DNA disruption of the bile acid sodium symporter BASS6 show decreased photosynthesis and slower growth under ambient, but not elevated CO2. Exogenous expression of BASS6 complemented this photorespiration mutant phenotype. In addition, metabolite analysis and genetic complementation of glycolate transport in yeast showed that BASS6 was capable of glycolate transport. This is consistent with its involvement in the photorespiratory export of glycolate from Arabidopsis chloroplasts. An Arabidopsis double knockout line of both BASS6 and the glycolate/glycerate transporter PLGG1 (bass6, plgg1) showed an additive growth defect, an increase in glycolate accumulation, and reductions in photosynthetic rates compared with either single mutant. Our data indicate that BASS6 and PLGG1 partner in glycolate export from the chloroplast, whereas PLGG1 alone accounts for the import of glycerate. BASS6 and PLGG1 therefore balance the export of two glycolate molecules with the import of one glycerate molecule during photorespiration

    Estimating daily and diurnal variations of illicit drug use in Hong Kong: A pilot study of using wastewater analysis in an Asian metropolitan city

    Get PDF
    The measurement of illicit drug metabolites in raw wastewater is increasingly being adopted as an approach to objectively monitor population-level drug use, and is an effective complement to traditional epidemiological methods. As such, it has been widely applied in western countries. In this study, we utilised this approach to assess drug use patterns over nine days during April 2011 in Hong Kong. Raw wastewater samples were collected from the largest wastewater treatment plant serving a community of approximately 3.5 million people and analysed for excreted drug residues including cocaine, ketamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and key metabolites using liquid chromatography coupled with tandem mass spectrometry. The overall drug use pattern determined by wastewater analysis was consistent with that have seen amongst people coming into contact with services in relation to substance use; among our target drugs, ketamine (estimated consumption: 1400-1600. mg/day/1000 people) was the predominant drug followed by methamphetamine (180-200. mg/day/1000 people), cocaine (160-180. mg/day/1000 people) and MDMA (not detected). The levels of these drugs were relatively steady throughout the monitoring period. Analysing samples at higher temporal resolution provided data on diurnal variations of drug residue loads. Elevated ratios of cocaine to benzoylecgonine were identified unexpectedly in three samples during the evening and night, providing evidence for potential dumping events of cocaine. This study provides the first application of wastewater analysis to quantitatively evaluate daily drug use in an Asian metropolitan community. Our data reinforces the benefit of wastewater monitoring to health and law enforcement authorities for strategic planning and evaluation of drug intervention strategies

    Implementing multi-session learning studies out of the lab: Tips and tricks using OpenSesame

    Get PDF
    Here, we provide tips and tricks for running multisession experiments out of the lab using OpenSesame, a user-friendly experimental tool that is open source and runs on Windows, MacOS, and Linux. We focus on learning experiments that involve the measurement of reaction times. We show how such experiments can be run with traditional desktop-based experiment software on participants’ own notebooks (i.e., out-of-the-lab, but not in a browser). Learning experiments pose specific challenges: accessing individual identifying numbers, accessing session numbers, and counterbalancing conditions across participants. This article includes helpful code and provides hands-on implementation tips that will be useful also beyond the presented use case. The aim of this article is to illustrate how to create multisession learning experiments even with little technical expertise. We conclude that, if done right, out-of-the-lab experiments are a valid alternative to traditional lab testing

    Alternative pathway to photorespiration protects growth and productivity at elevated temperatures in a model crop.

    Get PDF
    Adapting crops to warmer growing season temperatures is a major challenge in mitigating the impacts of climate change on crop production. Warming temperatures drive greater evaporative demand and can directly interfere with both reproductive and vegetative physiological processes. Most of the world's crop species have C3 photosynthetic metabolism for which increasing temperature means higher rates of photorespiration, wherein the enzyme responsible for fixing CO2 fixes O2 instead followed by an energetically costly recycling pathway that spans several cell compartments. In C3 crops like wheat, rice and soybean, photorespiration translates into large yield losses that are predicted to increase as global temperature warms. Engineering less energy-intensive alternative photorespiratory pathways into crop chloroplasts drives increases in C3 biomass production under agricultural field conditions, but the efficacy of these pathways in mitigating the impact of warmer growing temperatures has not been tested. We grew tobacco plants expressing an alternative photorespiratory pathway under current and elevated temperatures (+5 °C) in agricultural field conditions. Engineered plants exhibited higher photosynthetic quantum efficiency under heated conditions than the control plants, and produced 26% (between 16% and 37%) more total biomass than WT plants under heated conditions, compared to 11% (between 5% and 17%) under ambient conditions. That is, engineered plants sustained 19% (between 11% and 21%) less yield loss under heated conditions compared to non-engineered plants. These results support the theoretical predictions of temperature impacts on photorespiratory losses and provide insight toward the optimisation strategies required to help sustain or improve C3 crop yields in a warming climate
    • …
    corecore