4 research outputs found

    The Microevolution and Epidemiology of Staphylococcus aureus Colonization during Atopic Eczema Disease Flare.

    Get PDF
    Staphylococcus aureus is an opportunistic pathogen and variable component of the human microbiota. A characteristic of atopic eczema (AE) is colonization by S. aureus, with exacerbations associated with an increased bacterial burden of the organism. Despite this, the origins and genetic diversity of S. aureus colonizing individual patients during AE disease flares is poorly understood. To examine the microevolution of S. aureus colonization, we deep sequenced S. aureus populations from nine children with moderate to severe AE and 18 non-atopic children asymptomatically carrying S. aureus nasally. Colonization by clonal S. aureus populations was observed in both AE patients and control participants, with all but one of the individuals carrying colonies belonging to a single sequence type. Phylogenetic analysis showed that disease flares were associated with the clonal expansion of the S. aureus population, occurring over a period of weeks to months. There was a significant difference in the genetic backgrounds of S. aureus colonizing AE cases versus controls (Fisher exact test, P = 0.03). Examination of intra-host genetic heterogeneity of the colonizing S. aureus populations identified evidence of within-host selection in the AE patients, with AE variants being potentially selectively advantageous for intracellular persistence and treatment resistance.CPH was supported by Wellcome Trust (grant number 104241/z/14/z). MTGH, KAP, and KO were supported by the Scottish Infection Research Network and Chief Scientist Office through the Scottish Healthcare Associated Infection Prevention Institute consortium funding (CSO reference: SIRN10). Bioinformatics and computational biology analyses were supported by the University of St Andrews Bioinformatics Unit that is funded by a Wellcome Trust ISSF award (grant 097831/Z/11/Z). JP and MTGH were supported by Wellcome Trust grant 098051. AEM is supported by Biotechnology and Biological Sciences Research Council grant BB/M014088/1. SJB is supported by a Wellcome Trust Senior Research Fellowship in Clinical Science (106865/Z/15/Z)

    Average values of impressions of female photographs.

    No full text
    <p>Average values of impressions of female photographs.</p

    Existence of multiple ESBL genes among phenotypically confirmed ESBL producing klebsiella pneumoniae and escherichia coli concurrently isolated from clinical, colonization and contamination samples from neonatal units at Bugando Medical Center, Mwanza, Tanzania

    Get PDF
    Journal articleThe proportions and similarities of extended-spectrum β-lactamase (ESBL) producing K. pneumoniae (ESBL-KP) and E. coli (ESBL-EC) carrying multiple ESBL genes is poorly known at our setting. This study investigated the existence of multiple ESBL genes (blaCTX-M, blaTEM, and blaSHV) among ESBL-KP and ESBL-EC concurrently isolated from clinical, colonization, and contamination samples from neonatology units in Mwanza-Tanzania. Twenty and 55 presumptive ESBL-EC and ESBL-KP, respectively, from a previous study archived at−80 ◦C were successfully recovered for this study. Isolates were screened and confirmed for production of ESBLs by phenotypic methods followed by multiplex PCR assay to determine ESBL genes. All (100%) and 97.3% of presumptive ESBL isolates were phenotypically confirmed by Clinical and Laboratory Standards Institute (CLSI) and modified double-disc synergy methods, respectively. About 93.3% (70/75) of phenotypically confirmed ESBL isolates had at least one ESBL gene, whereby for 62.9% (44/70), all ESBL genes (blaCTX-M, blaTEM, and blaSHV) were detected. Eight pairs of ESBL bacteria show similar patterns of antibiotics susceptibility and ESBL genes. ESBL-KP and ESBL-EC, concurrently isolated from clinical, colonization and contamination samples, harbored multiple ESBL genes. Further, eight pairs of ESBL isolates had similar patterns of antibiotics susceptibility and ESBL genes, suggesting transmission of and/or sharing of mobile genetic elements (MGEs) among ESBL-KP and ESBL-EC

    The microevolution and epidemiology of <i>Staphylococcus aureus</i> colonization during atopic eczema disease flare

    No full text
    Staphylococcus aureus is an opportunistic pathogen and variable component of the human microbiota. In atopic eczema (AE) a characteristic of the disease is colonization by S. aureus, with exacerbations associated with an increased bacterial burden of the organism. Despite this, the origins and genetic diversity of S. aureus colonizing individual patients during AE disease flares is poorly understood. To examine the micro-evolution of S. aureus colonization we have deep-sequenced S. aureus populations from nine children with moderate to severe AE, and 18 non-atopic children asymptomatically carrying S. aureus nasally. Colonization by clonal S. aureus populations was observed in both AE cases and controls, with all but one of the individuals containing colonies belonging to a single sequence type. Phylogenetic analysis revealed that disease flares were associated with the clonal expansion of the S. aureus population, occurring over a period of weeks to months. There was a significant difference in the genetic backgrounds of S. aureus colonizing AE patients versus controls (Fisher’s Exact test, p=0.03). Examination of intra-host genetic heterogeneity of the colonizing S. aureus populations identified evidence of within-host selection in the AE patients, with AE variants being potentially selectively advantageous for intracellular persistence and treatment resistance
    corecore