636 research outputs found

    Novel AI strategies for Multi-Player games at intermediate board states

    Get PDF
    This paper considers the problem of designing efficient AI strategies for playing games at intermediate board states. While general heuristic-based methods are applicable for all boards states, the search required in an alpha-beta scheme depends heavily on the move ordering. Determining the best move ordering to be used in the search is particularly interesting and complex in an intermediate board state, compared to the situation where the game starts with an initial board state, as we do not assume the availability of “Opening book” moves. Furthermore, unlike the two-player scenario that is traditionally analyzed, we investigate the more complex scenario when the game is a multi-player game, like Chinese Checkers. One recent approach, the Best-Reply Search (BRS), resolves this by a process of grouping opponents, which although successful, incurs a very large branching factor. To address this, the authors of this work earlier proposed the Threat-ADS move ordering heuristic, by augmenting the BRS by invoking techniques from the field of Adaptive Data Structures (ADSs) to order the moves. Indeed, the Threat-ADS performs well under a variety of parameters when the game was analyzed at or near the game’s initial state. This work demonstrates that the Threat-ADS also serves as a solution to the unresolved question of finding a viable solution in the far-more variable, intermediate game states. Our present results confirm that the Threat-ADS performs well in these intermediate states for various games. Surprisingly, it, in fact, performs better in some cases, when compared to the start of the game

    Enhancing history-based move ordering in game playing using adaptive data structures

    Get PDF
    This paper pioneers the avenue of enhancing a well-known paradigm in game playing, namely the use of History-based heuristics, with a totally-unrelated area of computer science, the field of Adaptive Data Structures (ADSs). It is a well-known fact that highly-regarded game playing strategies, such as alpha-beta search, benefit strongly from proper move ordering, and from this perspective, the History heuristic is, probably, one of the most acclaimed techniques used to achieve AI-based game playing. Recently, the authors of this present paper have shown that techniques derived from the field of ADSs, which are concerned with query optimization in a data structure, can be applied to move ordering in multi-player games. This was accomplished by ranking opponent threat levels. The work presented in this paper seeks to extend the utility of ADS-based techniques to two-player and multi-player games, through the development of a new move ordering strategy that incorporates the historical advantages of the moves. The resultant technique, the History-ADS heuristic, has been found to produce substantial (i.e, even up to 70%) savings in a variety of two-player and multi-player games, at varying ply depths, and at both initial and midgame board states. As far as we know, results of this nature have not been reported in the literature before

    On Invoking Transitivity to Enhance the Pursuit-oriented Object Migration Automata

    Get PDF
    From the earliest studies in graph theory [2], [5], the phenomenon of transitivity has been used to design and analyze problems that can be mapped onto graphs. Some of the practical examples of this phenomenon are the “Transitive Closure” algorithm, the multiplication of Boolean matrices, the determination of Communicating States in Markov Chains etc. The use of transitivity, however, to catalyze the partitioning problems is, to our knowledge, unreported, and it is by no means trivial considering the pairwise occurrences of the queries in the query stream. This paper pioneers such a mechanism. In particular, we consider the Object Migrating Automaton (OMA) that has been used for decades to solve the Equi-Partitioning Problem (EPP) where W objects are placed in R partitions of equal sizes so that objects accessed together fall in to the same partition. The OMA, which encountered certain deadlock configurations, was enhanced by Gale et al. to yield the Enhanced OMA (EOMA). Both the OMA and the EOMA were significantly improved by incorporating into them, the recently-introduced “Pursuit” phenomenon from the field of Learning Automata (LA). In this paper1 we shall show that the Pursuit matrix that consists of the estimates of the probabilities of the pairs presented to the LA, possesses the property of transitivity akin to the property found in graph-related problems. By making use of this observation, transitive-closure-like arguments can be made to invoke reward and penalty operations on the POMA and the PEOMA. This implies that objects can be moved towards their correct partitions even when the system is dormant, i.e., when the Environment does not present any queries or partitioning information to the learning algorithm. The results that we present demonstrate that the newly-designed transitive-based algorithms are about 20% faster than their non-transitive versions. As far as we know, these are the fastest partitioning algorithms to-date

    InSAR as a tool for monitoring hydropower projects: A review

    Get PDF
    This paper provides a review of using Interferometric Synthetic Aperture Radar (InSAR), a microwave remote sensing technique, for deformation monitoring of hydroelectric power projects, a critical infrastructure that requires consistent and reliable monitoring. Almost all major dams around the world were built for the generation of hydropower. InSAR can enhance dam safety by providing timely settlement measurements at high spatial-resolution. This paper provides a holistic view of different InSAR deformation monitoring techniques such as Differential Synthetic Aperture Radar Interferometry (DInSAR), Ground-Based Synthetic Aperture Radar (GBInSAR), Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR), Multi-Temporal Interferometric Synthetic Aperture Radar (MTInSAR), Quasi-Persistent Scatterer Interferometric Synthetic Aperture Radar (QPSInSAR) and Small BAseline Subset (SBAS). PSInSAR, GBInSAR, MTInSAR, and DInSAR techniques were quite commonly used for deformation studies. These studies demonstrate the advantage of InSAR-based techniques over other conventional methods, which are laborious, costly, and sometimes unachievable. InSAR technology is also favoured for its capability to provide monitoring data at all times of day or night, in all-weather conditions, and particularly for wide areas with mm-scale precision. However, the method also has some disadvantages, such as the maximum deformation rate that can be monitored, and the location for monitoring cannot be dictated. Through this review, we aim to popularize InSAR technology to monitor the deformation of dams, which can also be used as an early warning method to prevent any unprecedented catastrophe. This study also discusses some case studies from southern India to demonstrate the capabilities of InSAR to indirectly monitor dam health

    On using adaptive Binary Search Trees to enhance self organizing maps

    Get PDF
    We present a strategy by which a Self-OrganizingMap (SOM) with an underlying Binary Search Tree (BST) structure can be adaptively re-structured using conditional rotations. These rotations on the nodes of the tree are local and are performed in constant time, guaranteeing a decrease in the Weighted Path Length (WPL) of the entire tree. As a result, the algorithm, referred to as the Tree-based Topology-Oriented SOM with Conditional Rotations (TTO-CONROT), converges in such a manner that the neurons are ultimately placed in the input space so as to represent its stochastic distribution, and additionally, the neighborhood properties of the neurons suit the best BST that represents the data

    Semi-supervised classification using tree-based self-organizing maps

    Get PDF
    This paper presents a classifier which uses a tree-based Neural Network (NN), and uses both, unlabeled and labeled instances. First, we learn the structure of the data distribution in an unsupervised manner. After convergence, and once labeled data become available, our strategy tags each of the clusters according to the evidence provided by the instances. Unlike other neighborhood-based schemes, our classifier uses only a small set of representatives whose cardinality can be much smaller than that of the input set. Our experiments show that, on average, the accuracy of such classifier is reasonably comparable to those obtained by some of the state-of-the-art classification schemes that only use labeled instances during the training phase. The experiments also show that improved levels of accuracy can be obtained by imposing trees with a larger number of nodes

    Improving global detection of volcanic eruptions using the Ozone Monitoring Instrument (OMI)

    Get PDF
    Volcanic eruptions pose an ever-present threat to human populations around the globe, but many active volcanoes remain poorly monitored. In regions where ground-based monitoring is present the effects of volcanic eruptions can be moderated through observational alerts to both local populations and service providers, such as air traffic control. However, in regions where volcano monitoring is limited satellite-based remote sensing provides a global data source that can be utilised to provide near-real-time identification of volcanic activity. This paper details a volcanic plume detection method capable of identifying smaller eruptions than is currently feasible, which could potentially be incorporated into automated volcanic alert systems. This method utilises daily, global observations of sulfur dioxide (SO2) by the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite. Following identification and classification of known volcanic eruptions in 2005–2009, the OMI SO2 data, analysed using a logistic regression analysis, permitted the correct classification of volcanic events with an overall accuracy of over 80 %. Accurate volcanic plume identification was possible when lower-tropospheric SO2 loading exceeded ∼ 400 t. The accuracy and minimal user input requirements of the developed procedure provide a basis for incorporation into automated SO2 alert systems

    Identifying unreliable sensors without a knowledge of the ground truth in deceptive environments

    Get PDF
    This paper deals with the extremely fascinating area of “fusing” the outputs of sensors without any knowledge of the ground truth. In an earlier paper, the present authors had recently pioneered a solution, by mapping it onto the fascinating paradox of trying to identify stochastic liars without any additional information about the truth. Even though that work was significant, it was constrained by the model in which we are living in a world where “the truth prevails over lying”. Couched in the terminology of Learning Automata (LA), this corresponds to the Environment (Since the Environment is treated as an entity in its own right, we choose to capitalize it, rather than refer to it as an “environment”, i.e., as an abstract concept.) being “Stochastically Informative”. However, as explained in the paper, solving the problem under the condition that the Environment is “Stochastically Decepti”, as opposed to informative, is far from trivial. In this paper, we provide a solution to the problem where the Environment is deceptive (We are not aware of any other solution to this problem (within this setting), and so we believe that our solution is both pioneering and novel.), i.e., when we are living in a world where “lying prevails over the truth”
    corecore