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Abstract—From the earliest studies in graph theory
[2], [5], the phenomenon of transitivity has been used
to design and analyze problems that can be mapped
onto graphs. Some of the practical examples of this phe-
nomenon are the “Transitive Closure” algorithm, the mul-
tiplication of Boolean matrices, the determination of Com-
municating States in Markov Chains etc. The use of transi-
tivity, however, to catalyze the partitioning problems is, to
our knowledge, unreported, and it is by no means trivial
considering the pairwise occurrences of the queries in the
query stream. This paper pioneers such a mechanism. In
particular, we consider the Object Migrating Automaton
(OMA) that has been used for decades to solve the Equi-
Partitioning Problem (EPP) where W objects are placed in
R partitions of equal sizes so that objects accessed together
fall in to the same partition. The OMA, which encountered
certain deadlock configurations, was enhanced by Gale
et al. to yield the Enhanced OMA (EOMA). Both the
OMA and the EOMA were significantly improved by
incorporating into them, the recently-introduced “Pursuit”
phenomenon from the field of Learning Automata (LA).
In this paper1 we shall show that the Pursuit matrix
that consists of the estimates of the probabilities of the
pairs presented to the LA, possesses the property of
transitivity akin to the property found in graph-related
problems. By making use of this observation, transitive-
closure-like arguments can be made to invoke reward and
penalty operations on the POMA and the PEOMA. This
implies that objects can be moved towards their correct
partitions even when the system is dormant, i.e., when the
Environment does not present any queries or partitioning
information to the learning algorithm. The results that we
present demonstrate that the newly-designed transitive-
based algorithms are about 20% faster than their non-
transitive versions. As far as we know, these are the fastest
partitioning algorithms to-date.
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I. INTRODUCTION

To achieve partitioning in unknown domains, re-
searchers have incorporated models that use hypo-
thetical (or “abstract”) objects to represent the true
data elements, and to infer the partitioning based on
the former. These hypothetical objects are manipulated
by the respective algorithms, and by processing these,
one minimizes the cost associated with migrating the
physical objects themselves. This mode of operation is
well-established, and has been utilized in the literature
to solve the Object Partitioning Problem (OPP). The
application of this paradigm is significant, because
it has been known to reduce the access time and
the computations involved in processing the relevant
data. The OPP has been studied since the 1970’s.
Because it is NP -hard, the original solutions were very
time consuming.

Due to the poor convergence of prior OPP/EPP
solutions, they were never utilized in real-life applica-
tion domains, until when the first paper on the OMA
was published by Oommen et al. [17], which led to
new and improved techniques to address a number of
emerging challenges in the field of machine learning,
all of which require the task of partitioning in one way
or another. Since then the OMA has been incorporated
to solve many real-life problems such as Cryptanalysis
in [10] and [18], stochastic mapping and partitioning
problems [11] and [15], Parallel and Distributed Pro-
cess Mapping [12], Multi-Constraint Static Mapping
in [6] and [16], Adaptive Data Structures, Quality
aware applications [14], Secure Statistical Databases
[3], Distributed Databases [13], Reputation Systems [9]
and [24], and Cloud Computing [8] and [23] etc. We
refer the reader to [20] for a detailed survey of the
field and its applications.

A near-optimal solution to the OPP when the
groups are of equal sizes was presented via the so-
called Object Migrating Automaton (OMA). This prob-
lem and the OMA-based solution involves the core of
this research. The OMA has been successfully applied
to many real-world scenarios briefly mentioned later,
and indeed, its computational overhead is insignifi-
cant. It is thus within the boundary of present-day
limitations.

The OPP would be less difficult if the uncertain
components associated with the problem were absent.
In reality, its complexity stems from the uncertainty
in the underlying phenomena, and the fact that we
are dealing with random Environments renders the
problem to be far more complex. The goal of any
solution to the OPP, and in particular of the OMA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carleton University's Institutional Repository

https://core.ac.uk/display/217571945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2827305, IEEE Access

2

paradigm, is that it should be able to determine the quality
of the inferences of the objects that are associated with
each other. In other words, it would be advantageous
to infer the “trustworthiness” of the Environment that
provides information about any specific object and
about the objects that it “wants” to be associated
with. This is, actually far from trivial, because as the
designers of the algorithms, we cannot “control” the
input that we receive.

Since the OMA uses the principles of LA, and
invokes a reward/penalty policy-based scheme, its
performance degrades drastically as the number of
partitions increases and/or as the Environment be-
comes more noisy. This is due to the fact that the
probability of receiving rewarding pairs for the par-
titions to converge decreases, and/or the probability
of receiving diverging pairs causes a more sluggish
convergence.

In all the various instantiations of the OMA, the LA
essentially utilized only the states (or the action prob-
ability vectors) associated with the various abstract
objects. This assertion was true till the last few months
when, the authors of this present paper observed that
the information resident within the access probability
matrix had been completely ignored. To place this
assertion in the appropriate context, this is analogous
to the family of LA which either utilized estimates
of the reward probabilities or which did not. Prior
instantiations of the OMA did not use these estimates.

The Pursuit strategy of designing LA is a special
derivative of the family of estimator algorithms, which
was first incorporated in the OMA in [20]. Pursuit
algorithms “pursue” the currently-known best action,
and increases the action probability associated with
the action that possesses the largest reward esti-
mate. The pursuit concept was first introduced by
Thathachar and Sastry in [22] and its discretized ver-
sion was proposed by Oommen and Lanctot [19]. Nu-
merous Pursuit-based LA have been proposed since
then (as can be seen from the survey in [19]).

Our recent results have demonstrated that invoking
and incorporating the information in the so-called
pursuit matrix is definitely advantageous. The first
result, which utilized this was reported in [20], where
we proposed the use of the pursuit method, which
estimates the statistics of the Environment. By using
these estimated values, one could infer whether to
accept or reject the incoming query pairs. We have also
incorporated this paradigm to the Enhanced OMA [21]
(which resolved the deadlock scenario described in
[4]). The results obtained and reported in [20] and
[21] were orders of magnitude faster than their non-
pursuit versions. As far as we know, this represents
the state-of-the-art and we will survey these results
briefly in a subsequent section.

Although the pursuit paradigm has been quite suc-
cessful in identifying so-called divergent queries, one
observes that it utilizes the reward/penalty policies in
a passive way. Whenever the queries are unavailable,
or whenever they are not in the pipeline to be pro-
cessed, it waits for the input from the Environment,

and thereafter invokes the proper policy based on the
pursuit matrix. The inevitable consequences of such a
policy-enforcing mechanism are:
• If the number of objects or actions are large,

the events triggering the reward and/or penalty
become scarce;

• When operating in a noisy Environment, the al-
gorithm is dormant whenever it wait for a query
from the Environment;

• As the size of the partitioning problem increases,
the probability of an object receiving a request
for an update decreases, hindering the overall
convergence rate of the algorithm.

The primary motivation for this present research
endeavor is to address the issues mentioned in the
above observation. In the body of this work, we
shall show that the pursuit matrix is not only useful
to achieve query identification. Rather, that it can
also provide meaningful inferences from the observed
query stream to yield a policy that actively (as opposed
to passively), or in a dormant manner, engages re-
ward/penalty operations. This is accomplished by in-
corporating an estimation of a measure that expresses
the similarity/relation between numerous objects that
have not been accessed. We are not aware of any
similar strategy that has been used either in the field
of LA or in the area of partitioning.

In the partitioning problem, the physical objects
are linked to one another through a physical or
a metaphysical relational tie. Although the pursuit
paradigm proposed in [20], [21] has improved the
OMA’s performance significantly, it only incorporates
the knowledge in the most basic or primitive form,
i.e., the pairwise relationship, which is established
between two objects. It is noteworthy that although
a query pair can occur in two ways, say 〈Ai, Aj〉 or
〈Aj , Ai〉, since the labeling of the objects is arbitrary,
we do not take the pains to distinguish between the
first or the second form. The analysis of this relation
consists of statistical modeling, specifying whether
certain pair of objects tend to occur together, which
has been the core of the proposed method in [20].

The observation mentioned above, i.e., 〈Ai, Aj〉 =⇒
〈Aj , Ai〉 is, clearly, what describes a reflexive relation.
Since we do not distinguish between either of these
two occurrences in the pair, we implicitly assume such
a reflexivity. However, there is another property of
the pursuit matrix that has neither been discovered
nor been utilized in partitioning-based problems. This
is the property of transitivity which is the central
“asset” which we shall take advantage of. After the
initial transient stage of the algorithm, as the pursuit
matrix converges, we shall show that the property of
transitivity becomes enforced. Thus, if 〈Ai, Aj〉 and
〈Aj , Ak〉 are related, the pair 〈Ai, Ak〉 can be inferred.
Consequently, in this research, we propose a novel
solution which takes advantage of a measure by which
objects in larger k-tuples (not just pairs) in a partition
tend to cluster together by merely investigating pair-
wise convergence properties. This enhances the per-
formance of the consequent OMA-based algorithms.
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The implication of this is significant. Indeed, even
though the pair of objects 〈Ai, Ak〉 is not accessed
together, we can infer that they should be together
in the same group, because of the elements that they
are already associated with. We will argue that this
transforms the dormant nature of the algorithm. It
also enhances the speed significantly. The details of
all these concepts will be provided presently.

The results obtained on benchmark Environments
demonstrate that our current transitive versions is up
to 100% faster than the non-transitive versions, and
the current version can be nearly 90 times faster than
the original OMA [17] in certain studied cases. By all
metrics, these results are incredible.

A. Paper Organization

Section II describes the Partitioning Problem in
general and provides a brief review of the field. We
also discuss the Pursuit principle and how it has
been utilized earlier in the Enhanced OMA (PEOMA).
Section III provides the theory and the necessary
background which are used later in Section V. In
Section IV, we discuss how the Environment can be
modeled and we provide a probabilistic representation
for it. Section V incorporates the idea of transitivity
and introduces the concept of Inferred queries as op-
posed to the Real queries presented by the Environ-
ment. In Section V-A, the convergence conditions of
the Transitive PEOMA (TPEOMA) are discussed in
detail. Section VI presents the simulation results for
the TPEOMA, after which we study its performance.
Section VIII concludes the paper and contains a brief
discussion about further research directions.

II. THE GENERIC PARTITIONING PROBLEM

The ultimate goal of every partitioning algorithm is
to gather the elements that “should belong together”
in an unsupervised manner. First of all, we assume
that there is the true unknown state of nature, i.e.,
Ω∗. Our aim is to try to learn a partitioning Ω+, that
is, hopefully, identical to Ω∗. Finding the proper par-
titioning of objects, and dividing them into relevant
sub-groups, is an NP -hard problem, which has been
the subject of research for more than five decades.
Due to its NP -hard nature, there exist no general
polynomial-time solution, and all of the reported al-
gorithms to date, take advantage of various heuristics,
which are mainly AI-based.

To assist in the task, we assume that any algorithm
attempting to do the partitioning interacts with an
Environment which probabilistically provides it with
information about the objects that should belong to-
gether. The Environment, referred to as E, randomly
selects the initial class with probability 1

R . It then picks
the first object in the query from this class, say, q1. The
second element of the pair, q2, is then chosen with the
probability p from the same class, and with probability
1 − p from one of the other classes uniformly, i.e.,
with the probability 1

R−1 uniformly. We assume that
E generates an “unending” stream of query pairs.

The Equi-Partitioning Problem (EPP) is a special
case of the Object Partitioning Problem (OPP), in
which there are equal number of objects in each group.
A review of the previously-proposed methods for the
OPP and the EPP can be found in [19] and [20].

To be specific, consider Figure 1, which represents
a case in which we have 3 classes each with 3 objects.
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Fig. 1: The general partitioning problem.

The three classes in this example are named G1, G2

and G3, and the objects inside them are represented
by integers in {1, · · · , 9}. The original distribution of
the objects between the classes is shown in Figure 1,
at the top. This is the true unknown state of nature,
i.e., Ω∗. The AI algorithm that attempts to learn Ω∗ is
initialized in a purely random manner by the numbers
within the range. This step is depicted at the bottom
of Figure 1, and Ω0 indicates the initial state of the
algorithm. At every iteration, a pair given by E, as
discussed above, is processed by the AI algorithm, and
it performs a learning step towards its convergence.
The goal of the algorithm is for it to converge to a
state, say Ω+. In an optimal setting, we would hope
that Ω+ is identical to Ω∗.

A classic LA has been used as the benchmark so-
lution for the EPP, and the corresponding methodol-
ogy that uses this paradigm, is the Object Migration
Automaton (OMA). It has been used in numerous
application domains [19].

The performance of the OMA is highly susceptible
to certain conditions, and it can even get “trapped”
in a deadlock situation. This prevents the OMA from
converging to the correct partitioning or slows down
its convergence. This scenario is explained in detail in



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2827305, IEEE Access

4

[21]. Gale et al. proposed an enhanced method in [4]
which we have referred to as the EOMA, in which they
discussed the deadlock phenomenon and addressed
its resolution, as has been done in [21] too.

The OMA and EOMA have fixed structure under-
lyings. They both have poor or mediocre performance
when the number of partitions are large (a hard-to-
solve problem) or when the Environment is difficult
to learn from, i.e., when there is the presence of a high
level of noise in the Environment.

A. Introducing the Pursuit Paradigm in LA

A traditional LA assumes that the actions are chosen
purely based on the “state” in which the machine is.
When the LA receives the feedback from the Envi-
ronment, it invokes the update policy function and
advances the machine to a new state. The output
function takes the new state and determines the action
to be taken. This strategy ignores any estimations of
the Environment’s reward/penalty probabilities. The
families of Estimator/Pursuit LA utilize “cheap” esti-
mates of the Environment’s reward probabilities, and
makes the next decision based on the action chosen,
the action probability and the estimates of the reward
probabilities to prioritize the actions. This makes the
LA to converge by an order of magnitude faster. In-
formally, we can reinterpret it as follows: By utilizing
inexpensive2 estimates of the reward probabilities, the
action-probability vector is updated not only on the
basis of the Environments’s response, but also based
on the ranking of these estimates. Consequently, as the
estimates becomes more accurate, the superior actions
will be chosen more often, and the LA will converge
to them at a much faster rate. This is referred to as the
pursuit phenomenon.

The original OMA has had many significant appli-
cations which include (but are not limited to) Adap-
tive Data Structures, Secure Statistical Databases, and
Distributed Database Systems (DDSs) Other applica-
tions in Reputation System [24] and Cloud Computing
[8] are other emerging applications of the OMA3.

Although the original OMA was a pioneering al-
gorithm that had significant applications, like any
other algorithm, it had some limitations. First of all,
the OMA algorithm ignores the quality of the input
provided by the environment. Indeed, it has no mech-
anism to enhance its performance by processing the
queries based on an inference of ‘p’. Secondly, the
swapping of the objects between classes is not always
necessarily achieved in the best possible manner. This
is because, when the number of actions is large, the
probability of receiving multiple subsequent rewards
for the same action becomes very small. In the follow-
ing sections we discuss and review these drawbacks.

In [20], the present authors recently incorporated
the Pursuit phenomenon which, as in the field of

2Of course, these estimates can be obtained using either a Maxi-
mum Likelihood or a Bayesian paradigm.

3A more complete list of these applications was presented in
Section I.

LA, enhances the OMA’s performance significantly.
Their proposed method operates by discarding the
divergent object pairs from the query stream. This can
be perceived as a filtering mechanism which triggers
the pursuit policy to eliminate the counter-productive
queries, thus leading to a faster convergence. The
resulting machine, referred to as the Pursuit OMA
(POMA), has been thoroughly tested in the standard
benchmark environments. Viewed from another per-
spective, by incorporating the pursuit paradigm, they
proposed that the Pursuit concept can be used as an
effective accept/reject policy, leading to a significant
increase in the performance of the OMA – sometimes
by a factor of 20 when compared to the original
OMA [20]. This is achieved without any significant
computational overhead, whenever the Environment
is difficult to learn from and/or when the partitioning
problem is inherently formidable.

In the ideal Environment, under certain conditions,
there is a chance that the OMA gets “trapped” in a
deadlock situation which prevents it from converging
to the correct partitioning. This was briefly alluded to
earlier and will be explained in greater detail later. It
suffices to mention that this deadlock was resolved by
Gale et al. in [4], to create the so-called EOMA.

The present authors also integrated the pursuit
concept into this enhanced version to design the
PEOMA. The PEOMA utilizes the same principles
used in the POMA. This again, is achieved without a
significant computational overhead. The effectiveness
of the pursuit paradigm in the POMA and PEOMA
are discussed in details in [20] and [21] respectively.

III. COHESIVENESS WITHIN OBJECTS IN THE EPP

The first issue that we encounter when we want to
advance the field of resolving the EPP is to see if we
can use new criteria to identify which objects belong
to the same partition. We intend to investigate how
this can be inferred without considering the issues that
have been analyzed earlier. It is easy to see that all
the objects within an underlying partition should be
strongly and directly related to each other, and that
they should frequently co-appear in the queries. Such
structural patterns are, in turn, based on so-called
casual propositions which should lead towards rela-
tional “interactions” between the objects themselves.
This is the avenue that we now investigate.

Structural relations that are imposed by the Envi-
ronment can orient the objects towards a uniformity
when there is an “interaction” between a pair of
objects. Such relations may be “transmitted” through
intermediaries even when two objects are not explic-
itly examined at any given time instant. This intercon-
nection is directly associated with the relational bonds
that these objects possess. We shall now investigate
whether this property, which already relates subgroups
and not just pairs, can be quantified by various specific
properties that can be extracted from the Environment.

From Figure 1 and E’s modus operandus, we see
that there are four common phenomena that each
subgroup possesses:
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1) The frequency of objects co-occurring;
2) The relative frequency of the objects in a pair

belonging to distinct partitions;
3) The symmetric property of the queries in any pair

presented by E;
4) The reachability of the objects in a partition within

the graph representing the set of all objects.

Our task is to consider how information about all
these issues can be extracted from the Environment.
As one observes, the first two entries above, namely,
those dealing with the frequencies of the pairs, con-
stitutes the principles motivating the pursuit-based
solutions [20] and [21], where these frequencies were
obtained by employing a ML scheme. Our task now
is to incorporate the latter two entries. We formalize
the symmetric property, as seen in the partitioning
problem:

Definition 1. A binary relation R over a set of objects W
is symmetric if

∀Oi, Oj ∈ W : OiROj ⇐⇒ OjROi. (1)

Theorem 1. The model of E and the solution invoked by
any pursuit-based paradigm of the EPP possess the property
of symmetry.

Proof: Our first task is to show that the model
of E, as discussed above, possesses symmetry. To do
this, consider the probability of E presenting a query
pair 〈Oi, Oj〉. This means that the first element Oi

is chosen from any group with probability 1
W . For

the sake of simplicity, let this group be Gr. Consider
now the scenario where the second element is from
the same group. In such a case, the probability of
choosing Oj from the same group is p · R

W−R , because,
p is the probability of E choosing an element from
the same group, and 1

W/R−1 = R
W−R is the prob-

ability of choosing any element other than Oi. The
product of these two quantities yields the probability
P (〈Oi, Oj〉) = 1

W · p ·
R

W−R . Similarly, if Oj is chosen
first, as in the pair 〈Oj , Oi〉, the probability of choosing
Oj will be 1

W , after which Oi will be chosen, yielding
P (〈Oj , Oi〉) = 1

W · p ·
R

W−R . The symmetry is clear
because these two expressions are identical.

For the other scenario, the second object in 〈Oi, Oj〉
is chosen from a different group other than the group
of Oi. The corresponding probability for Oi remains to
be 1

W . When it concerns choosing the second element
Oj , the probability of choosing this element from a
different group is given by (1− p) · 1

W/R ·
1

(R−1) . Here,

(1−p) is the probability of choosing Oj from a different
group, i.e., P (Oj /∈ Gr), and once the decision is made
to choose from another group, we observe that there
are (R − 1) equally likely groups of size W

R each. By
applying a similar principle, the probability for the
case P (〈Oj , Oi〉) can be shown to be 1

W ·(1−p)·
R

W (R−1) .

Again, the probabilities for 〈Oi, Oj〉 and 〈Oj , Oi〉 are
identical, implying that E possesses the symmetry
property.

Now that we have seen that E possesses symmetry,

we want to show that both the pursuit-based algo-
rithms, the POMA and PEOMA, are able to infer this
symmetry. Without belaboring the point, we note that
both these algorithms compute and maintain the so-
called pursuit matrices. As explained in [20], [21], this
matrix consists of a sequence of blocks, and within
the blocks along the diagonal, the groups naturally
fall into clusters. The entire pursuit matrix consists
of estimates of the probabilities of the objects being
accessed together which is thus a symmetric matrix.
The principle behind the POMA and PEOMA is that if
an estimate is less than κ, we ignore the corresponding
query. It is thus clear that if 〈Oi, Oj〉 is ignored because
it is considered to be a divergent query, the pair
〈Oj , Oi〉 will also be a divergent query. Thus, both
the POMA and PEOMA infer and use the property
of symmetry.

While this property was not specifically mentioned
in [4], [17], it was tacit, and implemented in [20]
and [21]. The details of the corresponding modified
OMA algorithms for both these scenarios were also
presented there.

We now consider the property of transitivity as it
appears in the partitioning problem. We can formalize
this property as follows:

Definition 2. A binary relation R over a set of objects W
is transitive if:

∀Oi, Oj , Ok ∈W : (OiROj ∧OjROk) =⇒ OiROk.
(2)

Theorem 2. The model of E proposed in Section II for
the EPP possesses the property of transitivity from a
probabilistic perspective.

Proof: Consider any three objects Oi, Oj and Ok.
For any probability value ‘p’, that characterizes E,
we want to show that if the probability of 〈Oi, Oj〉
and 〈Oj , Ok〉 being generated is some quantity λ,
the probability of 〈Oi, Ok〉 being generated is also
precisely λ.

From the arguments presented in Theorem 1, one
observes that the probability of Oi and Oj belonging
to the same class is P (〈Oi, Oj〉) =

1
W ·p·

R
W−R . Similarly,

the probability of Oi and Ok belonging to the same
class is P (〈Oi, Ok〉) =

1
W · p ·

R
W−R .

Consider now the probability P (〈Oi, Ok〉|〈Oi, Oj〉 ∧
〈Oj , Ok〉). By virtue of the independence of the
queries, this has the form:

P (〈Oi, Ok〉|〈Oi, Oj〉 ∧ 〈Oj , Ok〉) =

P (〈Oi, Ok〉) · P (〈Oi, Oj〉) · P (〈Oj , Ok〉)

P (〈Oi, Oj〉) · P (〈Oj , Ok〉)
= P (〈Oi, Ok〉)

=
1

W
· p ·

R

W −R
.

From this we see that the probability of Oi and Ok

belonging to the same class is identical to the proba-
bility of Oi and Oj belonging to the same class, and
this, in turn, is also identical to the probability of Oj

and Ok belonging to the same class. Hence the result.
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Since E is transitive, our aim is now to have the
LA infer this transitivity and to further enhance the
PEOMA. We shall proceed to show how this can
be achieved in two steps. In the case of a noiseless
environment, as in the case of the PEOMA, we will
show that the pursuit matrix is composed of block-
diagonal matrices. We will see that each of these
blocks naturally demonstrates transitivity, and that
this therefore can be used to achieve faster con-
vergence. But since a noiseless environment is non-
existent, our next task will be to see what happens
in the case of real-life noisy environments. Again, we
shall show that if the pursuit matrix is appropriately
thresholded, the entries become unity and zero, which
allows us to demonstrate transitivity and thus, invoke
reward/penalty operations even while the environ-
ment is dormant and not generating any new queries.

A. Transitivity for the Noiseless Environment

Let us consider the case when there is the absence
of “noise” in the Environment, i.e., there is absolute
certainty. We can infer the actual value of the relation
between Oi and Oj by a quantity µ∗

i,j , expressed4 as:

µ∗

i,j = P (Rk) · P (Aj |Ai) · P (Ai), ∀i, j if 〈Ai, Aj〉 ∈ RK ,

with k ∈ {1, · · · , R},

= 0 otherwise,
(3)

where P (Rk) is the probability that the first element,
Ai, is chosen from the group Rk, and P (Aj |Ai) is the
conditional probability of choosing Aj , which is also
from Rk, after Ai has been chosen. The set of values of
µ∗

i,j in Equation (3) is used to represent the elements
of the policy matrix M∗. We shall now examine the
properties of M∗ and show that it demonstrates the
transitivity phenomenon.

Theorem 3. The matrixM∗ demonstrates the transitivity
of E.

Proof: The proof consists of two parts. The first
part, which specifically describes M∗, is rather iden-
tical to the corresponding proof found in [20]. The
second part shows the transitivity of E.

Since E uniformly selects a pair of elements from
two distinguished groups, the matrix M∗ =

[

µ∗

i,j

]

is
block-diagonal5 of the form:

M∗ =





















M∗

1 0 . . . 0

0 M∗

2

...
...

. . .
...

0 · · · . . . M∗

R

(4)

4Please note that this is the total probability of E presenting the
pair 〈Oi, Oj〉.

5It can be shown that by an appropriate re-mapping of the
indices, one can obtain a block matrix in which the elements of the
partitioning Ω

∗ are adjacent, even if the original matrix is cluttered.

where 0 represents a square matrix containing only
0’s. On the other hand, each matrix M∗

r, (1 ≤ r ≤ R),
is a matrix of probabilities of size W

R ×
W
R possessing

the following form:

M∗

r =













0 R
W (W−R) · · · R

W (W−R)
R

W (W−R) 0 · · · R
W (W−R)

...
. . .

...
R

W (W−R) · · · R
W (W−R) 0













,

(5)
and this is true since the relevant distributions are
uniform. If the first element is denoted by E is Ai

from class Gr, the probability that the second element
is selected from any of the other elements in Gr is
equally divided between these elements. Likewise, the
probability of the second element in the pair being
any of the other elements not in Gr, is also assumed
to be divided equally between them. We shall show
the result for the matrixM∗

1, whence the proof for the
general M∗

r would be obvious.
M∗

1 is a W
R ×

W
R matrix whose element [i, j] is the

likelihood that E chooses the objects 〈Oi, Oj〉 which
is introduced as a result of the real-world query of
the form 〈Ai, Aj〉. Clearly, since single objects cannot
be accessed alone at any time, 〈Oi, Oi〉 cannot be a
possible pair since the real pair 〈Ai, Ai〉 is impossible
in the real world. Thus, the diagonal elements are 0.

Consider now the scenario when the first element
chosen by E is O1. Then the second element can be
any one of the Oj ’s, 2 ≤ j ≤ W

R , and hence j can take
W
R − 1 possible values. Since all of these elements are
equally likely, the conditional probability of j given
that i = 1 equals 1

W

R
−1

= R
W−R . Since the total prob-

ability P (u, v) = P (u|v).P (v), and since P (O1) = 1
W ,

the total probability P (O1, Oj) =
R

W (W−R) , proving the
explicit form for the first row of M∗

1. The expressions
for the other rows in M∗

1 follow analogously.
A simple algebraic exercise will demonstrate that

the sum of all the elements in M∗

1 is 1
R . A similar

argument can be used to show that the contents of
any M∗

r obeys Equation (5), and that the sum of all
the probabilities inM∗, given in Equation (4), is unity.
This concludes the first part of the proof.

To demonstrate the transitivity, we concentrate on
three arbitrary indices i, j and k. If i and j do not
belong to the same block, then µ∗

ij from Equation (3)
must be 0. Otherwise, if they do belong to the same
block, say M∗

r , the corresponding entry in the µ∗

ij

should be R
W (W−R) . Similarly, if we consider the in-

dices j and k, if they do not belong to same block, the
entry µ∗

jk should be 0, and it will also have the value of
R

W (W−R) if they do belong to the same block. It is now

easy to see that if µ∗

ij is R
W (W−R) and µ∗

jk is R
W (W−R) , it

constrains i and k to also be in the same block forcing
µ∗

ik to also be R
W (W−R) . The theorem follows.

We now examine the real-world scenario, when the
Environment is noisy.
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IV. THE NOISY ENVIRONMENT

Our task is to now confirm the transitivity for the
noisy environment. The information which resides in
the pursuit matrix, introduced in [20], can be uti-
lized to extract the relationships between objects or
even groups of objects. In order to study and extract
these relations, a formal model of the Environment
which generates the queries, is necessary, and we
shall achieve this presently. This will be shown to
demonstrate transitivity and it will thus provide the
formal definitions which lays the foundation of the
transitive pursuit method.

By computing a simple Maximum Likelihood (ML)
estimate of how frequently every query 〈Oi, Oj〉 ap-
pears, one obtains an estimate of the underlying prob-
abilities of E in generating every pair combination.
As the number of queries processed become larger,
the quantities inside M∗

i will become significantly
larger than the quantities in each of the off-diagonal
blocks. An example of how the estimate of M∗ looks
is displayed in the figure on the left in Figure 2 for
the simple case when we have three block matrices,
i.e., when we are dealing with three distinct partitions.
The reader will observe that within each block, the es-
timates of the probabilities are almost the same but the
variations are due to the inaccuracies of the estimates.
As we increase the number of query pairs processed,
the estimate values in each block will tend to approach
their asymptotic values. Similarly, outside of these
blocks, the asymptotic values will be correspondingly
very small, and the magnitude of these entries will be
discussed soon.

Consider now the scenario when we render the
situation to be binary. To achieve this, we create an
augmented matrix Q. The entry Qij is set to be unity
if M∗

ij is close to R
W (W−R) , and is set to 0 when M∗

ij

is less than a user-defined threshold, say τt. In such a
case, one observes that the matrix Q asymptotically
becomes binary, where the block-diagonal matrices
corresponding to the underlying partitions attain the
value of unity, and all the off-diagonal matrices be-
come 0. This is depicted in the figure on the right
of Figure 2. The transitivity of E can thus be easily
inferred, as we shall do in Theorem 2.

The next subsection formalizes the phenomenon.

A. Modeling the Noisy Environment and its Transitivity

Theorem 4. By a simple thresholding mechanism, the
transitivity property of the matrix M∗ remains valid even
when the environment is noisy.

Proof: As in the case of Theorem 3, the proof con-
sists of two parts, although the corresponding parts
are more complex. The first part, which specifically
describesM∗, is rather identical to the corresponding
proof found in [20]. There are a few fine details
which are different and these will be highlighted. The
second part, which shows the transitivity of E, uses
arguments similar to those in the above section.

Since E uniformly selects a pair of elements from
two distinguished groups, the matrix M∗ =

[

µ∗

i,j

]

is block-diagonal6. In the presence of noise in E, the
entries of the pair 〈Oi, Oj〉 can be selected from two
different distinct classes, and hence the matrix, M∗,
specifying the probabilities of the accesses of the pairs
obeys Equation (6):

M∗ =





















M∗

1 θ . . . θ

θ M∗

2

...
...

. . .
...

θ · · · . . . M∗

R

, (6)

where θ and M∗

rs are specified as per Equation (7)
and Equation (8) respectively. In the above,

θ = θo ·







1 1 · · · 1
...

...
. . .

...
1 · · · · · · 1






, (7)

and

M∗

r = θd ·









0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0









, (8)

where, 0 < θd < 1 is the coefficient which specifies
the accuracy of E, and θo is related to θd as per
Equation (8) and Equation (7) relations.

To prove the above, as in the case of Theorem 3,
we show the result for the matrix M∗

1, whence the
proof of the general M∗

r can be trivially obtained.
M∗

1 is a W
R ×

W
R matrix whose [i, j] entry represents

the probability of 〈Oi, Oj〉 being presented by E. If
E chooses the first entry to be A1, it can choose the
second element from the same class with a probability
θ, and an element can be chosen from any of the
remaining classes7 with probability 1− θ. Since M∗

1 is
symmetric, all the entries along the diagonal are zero
and the off-diagonal entries represent the within-class
probabilities of 〈Oi, Oj〉 where 2 ≤ j ≤ W

R . Since all
the [1, j] entries of M∗

1 are equally likely8, the form of
Equation (8) is clear, where θd is the total probability
of any of the elements, other than A1, in M∗

1 being
chosen.

Using the same analogy, we can factor out the equal
elements of M∗

r (i.e., that all the non-diagonal entries
are equal and that the diagonal elements are all 0), to
represent each block as Equation (8).

If A2 belongs to a class distinct from A1, as opposed
to the case of Theorem 3, the θ matrices in the same
block-row with M∗

1 of M∗, cannot be zero matrices
anymore. Thus, each entry in the first row outside of

6As in the case of [20] and [21], it can be shown that by an
appropriate re-mapping of the indices, one can obtain a block matrix
in which the elements of the partitioning Ω∗ are adjacent, even if
the original matrix is cluttered.

7This must be contrasted with Theorem 3 where E cannot choose
the second element from any other class.

8The equally-likely condition is a necessity to demonstrate tran-
sitivity. It was not required in the case of the [20] and [21].
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Fig. 2: The estimation of M∗ which allows us to invoke the pursuit concept. The number of partitions, R, in
this case, is 3 and p = 0.8. The figure to the left represents the joint probabilities of the objects. The figure to
the right is the binary valued representation as in the text.

M∗

1 must be set to the probability value of Oj being
selected (WR + 1 ≤ j ≤ W ) from any other class.
Since all the other classes are equi-probable in being
selected, we need to only determine this probability
for any one element and see that the rest of the entries
possess the same values. We let this probability, the
element [1, j], WR + 1 ≤ j ≤W of θ, be θo.

Since we have a total of W elements in every row
of M∗, and since there are W

R of them in each matrix
θ, in any of the rows of M∗

1 there will be W − W
R

elements which will all equal to θo. We can divide the
rest of the remaining elements into R − 1 groups of
size W

R and use Equation (7) to yield a block matrix
representation.

To obtain the value of θo, we use the fact that
the summation of all the elements in M∗ must be
equal to unity. Since we have W rows with identical
summations over every rows, the sum of every row
must be equal to 1

W . Thus, with a simple algebraic
computation, we can derive the values for the sum of
the first row to be:

θd(
W

R
− 1) + θo(W −

W

R
) = 1, (9)

whence, we can see that θd has the form:

θd =
1− θo(W −

W
R )

W
R − 1

. (10)

Having described M∗, our next task is to show
that E possesses transitivity. To do this, as explained
in the previous section, we maintain an augmented
binarized matrix Q. As the number of query pairs in-
creases, the estimate µ∗

ij which converged in the noise-

free environment to R
W (W−R) , would, in the noisy

environment converge to θd, as given by Equation (10).
The reader will observe that θd in Equation (10), is
explicitly given in terms of θo, and that every element
outside the block-diagonal matrix for every group is
exactly θo. Therefore, if we keep a threshold smaller
than θo and retain those elements in Q, all the off-
diagonal entries in Q will become 0. Further, all the
entries in the block matrices M∗

r will be R
W−R which

can be rendered to be ‘1’ in the binary matrix, Q.

Now, to demonstrate the transitivity, we again con-
centrate on three arbitrary indices i, j and k. If i and j
do not belong to the same block, then the arbitrary
element q∗ij of Q, would be set to 0. On the other
hand, if they do belong to the same block, say Q∗

r ,
the corresponding entry in the q∗ij should be unity.
Similarly, if we consider the indices j and k, we see
that if they do not belong to same block, the entry q∗jk
will be 0, and it will also have the value of unity, if
they do belong to the same block. It is now easy to
see that if both q∗ij and q∗jk are 1, it constrains i and
k to also be in the same block forcing q∗ik to also be
unity. The theorem follows.
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As in the POMA and PEOMA, specifying a user-
defined threshold close to 0, τ , we will be able to
compare every estimate to it, and make a meaningful
decision about the identity of the query. If the corre-
sponding estimate is less than τ we can confidently
assert that it came from a divergent query. In other
words, by merely comparing the estimate to τ we can
determine whether a query pair 〈Oi, Oj〉 should be
processed, or quite simply, be ignored. This takes care
of the symmetric components of the Pursuit matrix,
and also resolves the deadlock. However to consider
the transitivity, we now utilize the property asserted in
Theorem 2, without explicitly maintaining the matrix
Q. This is explained in the next section.

V. THE TRANSITIVE PEOMA (TPEOMA)

Our task now is to create an even more enhanced
version of the PEOMA, which considers reflexivity
and transitivity. We shall divide this in two phases,
both of which utilize the pursuit matrix described in
[20] and [21]. The first phase is identical to the PEOMA
which is given in Algorithm 2. Indeed, before the
estimate has converged, we must merely invoke the
EOMA whenever a query is processed. However, after
convergence, the identity of every query is evaluated,
and every query which is inferred to be divergent
is ignored. Further, if the estimate is greater than τ ,
the pair is used to invoke the Reward and Penalty
functions of the original EOMA algorithm given in
Algorithms 3 and 4 respectively. The question of when
the estimate has converged is decided by simply
assuming that a reasonable convergence has occurred
by a certain number of iterations, say κ. Thus, after κ
iterations, if P [Ai, Aj ] > τ then the pair is considered
as a valid pair (converging pair), and otherwise, it
would be an outlier (diverging pair) which should be
filtered out9.

The next phase will consider how the property of
transitivity can be taken advantage of. The reader
will observe that Theorem 2 has laid the foundation
by which the transitivity concept can be incorporated
into the pursuit paradigm. This foundation, of course,
relies on inferring the relation between the objects,
which can be extracted from the query stream pro-
vided by the Environment. This can then be applied
to both the noise-free and the noisy environments as
presented in previous section. Thus, our goal would
be to process the incoming query and, first of all,
resolve the issues for the PEOMA, and thereafter, infer
the transitive relations between the object pair and the
rest of the objects located in the same partition. Again,
we shall accomplish this by resorting to the informa-
tion found in the pursuit matrix and the thresholding
described in Theorem 2.

Since the pursuit matrix represents the estimates
of the likelihoods of objects occurring together, we
can utilize this matrix to infer the transitive relations
among the objects. Consider a case when the query

9The reader can refer to [20] for the details on how we can specify
the values of τ and κ as far as he PEOMA is concerned.

pair 〈Ai, Aj〉 is given by E. All the objects that are in
a transitive relation with Ai through (or rather, because
of) Aj are located in the j-th row of the pursuit
matrix10. The likelihood values among the elements
in the j-th row vary depending on the strength of
the relations to Aj . We now define a threshold value,
say τt, which represents the minimum likelihood limit
for the elements to quantify the transitive bounds
between Ai and the remainder of the objects in the j-th
row. Thus, if an element passes this threshold, the al-
gorithm can invoke the the same action for the objects
in the transitive relation with Ai. Since this paradigm
uses the pursuit matrix to infer the transitivity relation
among objects, we refer to this scheme the Transitive
PEOMA, TPEOMA. The algorithmic representation of
this approach is further explained below.

Up on receiving a reward for a pair of objects in
a query by E, the TPEOMA will reward the objects
which are in transitivity relation defined by the pur-
suit matrix and the τt value. This behavior can be
interpreted as an extrapolation or forecasting of what
pairs would appear together in the future given by the
E. Clearly, in the absence of any a priori knowledge,
since we have W objects in total, we can assume
that the lowest bound for τt should be 1

W (W−1) . The
upper bound for the ideal environment was obtained
previously which is R

W (W−R) . Thus, 1
W (W−1) < τt <

R
W (W−R) .

In the following section, we discuss how to attain an
estimate of τt and the necessary conditions required
for the convergence of the TPEOMA.

So far the pursuit paradigm has been limited to the
interaction between the OMA and the Environment.
The accept/reject policy for a query is inferred from
the pursuit matrix with a minimum computational
overhead. Surprisingly, we can use the pursuit matrix
to extract the pairwise relations between the objects
in O(W ), where W is the number of objects to be
partitioned.

From the above, the reader will observe that re-
gardless of how well the PEOMA performs in a noisy
environment or in solving difficult partitioning prob-
lems, the overall convergence rate of any OMA-based
solution will be a direct function of the query count
received. Thus, if the number of objects or the partition
count increases, it reduces the convergence speed
due to the decrease in the probability of receiving a
specific converging pair, or receiving enough number
of query pairs for each partition so that the PEOMA
can actually converge. This is not a design issue of the
OMA in general, but rather is an inherent nature of
the partitioning problem.

While this phenomenon is true of the PEOMA,
a remedy to accelerate the convergence rate of the
PEOMA, when the environment is dormant, is to gen-
erate so-called Artificial queries, and this is precisely
what the TPEOMA achieves. Since the transitivity
relation determines how objects within a partition are

10Since the queries are symmetric, it does not matter whether if
we consider row i or j to locate the transitive objects.
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related to each other, if the PEOMA receives a pair of
objects from the environment, we can generate a series
of Inferred queries by determining all of the objects
that lie within the transitivity relation with the given
query objects. Clearly, these are highly relevant to
the original received query even though these Inferred
queries have not actually occurred. In other words,
we predict the future behavior of the environment by
incorporating the Pursuit matrix and we can achieve
this during the phase when the Environment is “dor-
mant”, i.e., when it is generating no queries for the
AI system to process. This method is formally given
below.

A. Remarks Regarding the TPEOMA

The pursuit matrix collects the likelihood of objects
occurring together in the matrix M∗, defined in The-
orem 3 and Theorem 4. In other words it captures
the E’s behavior. The TPEOMA seeks a boundary
after which the estimate of this likelihood would fall
asymptotically.

After enough number of iterations, when the
PEOMA is considered to have converged, the entries
of the pursuit matrix will quantify the underlying rela-
tions between objects by estimating the corresponding
probabilities of E. This is can be utilized to infer
the underlying reflexive and transitive relations. As
the number of queries processed becomes larger, the
quantities inside M∗

i will grow significantly larger
than the quantities in each of the off-diagonal blocks in
M∗

i . For example, for the case represented in Figure 2,
M∗ was obtained for the simple case when we have
three block matrices, i.e., when we are dealing with
three distinct partitions. From the figure, it can be
observed that the estimates of the matrix M∗

i have
much higher values for the objects residing in the
same group.

The question of when the estimates can be consid-
ered as converging is simply determined by a reason-
able threshold τ which is obtained after κ iterations.
Thus, if P [Ai, Aj ] > τ then the pair is considered
as a valid pair (converging pair), and otherwise, it
would be an outlier (diverging pair) which should
be filtered out. After receiving each pair, we update
the statistics to reflect the newly obtained values.
This concept is demonstrated algorithmically in the
TPEOMA algorithm (Algorithm 1) below.

The reader should specifically note the following:

1) First of all, the TPEOMA is design as a standalone
unit.

2) While the query statistics are gathered, processed
and thresholded in the TPEOMA, the actual
migration is achieved by invoking the EOMA
(see lines 9, 12 and 15). However, rather than
invoking the entire EOMA, we merely call its
skeletal version (SkeletalEOMA) which avoids the
input/output operations.

3) In the TPEOMA, if the query is divergent and the
pursuit matrix has not converged yet, we merely

Algorithm 1 TPEOMA

Input:

• A matrix of counters to yield frequencies, Z ,
initially set to zeros, whence P is computed.

• A user-defined threshold, τ , set to a value reason-
able close to zero.

• A user-defined threshold, τt, set to a value greater

than
1

W 2 −W
.

• The number of states N per action.
• A stream of queries 〈Ai, Aj〉.
• K is the number of iterations required for P to

“converge”.

Output:

• A periodic clustering of the objects into R parti-
tions.

• ξi is the state of the abstract object Oi. It is an
integer in the range 1 · · ·RN , where, if (k−1)N+
1 ≤ ξi ≤ kN then object Oi is assigned to αk.

1: begin
2: The initialization of {ξp}, as described in the

text.
3: for a sequence of i← 1, · · · , T queries do
4: Read query 〈Ai, Aj〉
5: Z[Ai, Aj ]← Z[Ai, Aj ] + 1
6: Z[Aj , Ai]← Z[Ai, Aj ]

7: Pi,j ←
Z[Ai, Aj ]

∑W
k,l=1 Z[Ak, Al]

⊲ Update stats

8: if i < κ then ⊲ Invoke the EOMA
9: SkeletalEOMA({ξp}, Ai, Aj)

10: else
11: if Pij > τ then ⊲ Valid query
12: SkeletalEOMA({ξp}, Ai, Aij)
13: for l← {1, · · · ,W} ∧ l 6= i, j do
14: if Pil > τt then
15: SkeletalEOMA({ξp}, Ai, Al)
16: end if
17: end for
18: end if
19: end if
20: end for
21: Print out the partitions based on the states {ξi}
22: end

invoke the EOMA as in line 9. Note that lines 12
and 15 process the convergent queries.

4) With regard to the Skeletal EOMA, we have again
written it in a modularized manner, unlike the
representation given in [21].

5) Finally, with regard to the Real and Inferred
queries, we invoke the reward/penalty function
(line 9 and 12 in Algorithm 1, and lines 6 and
8 in Algorithm 2) for the Real queries in the If
block (line 8). However, for the Inferred queries,
we enter the Else block in line 14, and we again
achieve this in line 12 of Algorithm 1 and lines 6
and 8 of Algorithm 2, avoiding code duplication.
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Algorithm 2 SkeletalEOMA({ξp}, Ai, Al)

Input:

• The abstract objects {O1, · · · , OW }; ξi and ξj are
the states associated with Ai and Aj respectively.
• The number of states N per action.

Output:

• A periodic clustering of the objects into R parti-
tions.
• ξi is the state of the abstract object Oi. It is an

integer in the range 1 · · ·RN , where, if (k−1)N+
1 ≤ ξi ≤ kN then object Oi is assigned to αk.

1: begin
2: if ξi div N = ξj div N then ⊲ The partitioning

is rewarded
3: Call ProcessRewardEOMA({ξp}, Ai, Aj )
4: else ⊲ The partitioning is penalized
5: Call ProcessPenaltyEOMA({ξp}, Ai, Aj)
6: end if
7: return {ξp}
8: end

Algorithm 3 ProcessRewardEOMA({ξp}, Ai, Aj)

Input:

• The indices of the states, {ξp}; ξi and ξj are the
states associated with Ai and Aj respectively.
• The query pair 〈Ai, Aj〉.

Output:

• The next states of the Oi’s.

1: begin
2: if ξi mod N 6= 1 then ⊲ Move Oi towards the

internal state.
3: ξi ← ξi − 1
4: end if
5: if ξj mod N 6= 1 then ⊲ Move Oj towards the

internal state.
6: ξj ← ξj − 1
7: end if
8: return {ξp}
9: end

VI. SIMULATION RESULTS

This section is dedicated to the simulation results in
which we discuss the effectiveness and convergence
rate of the TPEOMA, and compare its performance
with the results presented and reported in [21] for
various values of R and W , and in different Environ-
ments. The number of states in every action was set
to be a constant, 10, as used in [21]. The convergence
conditions were also identical to the ones specified
in [21], and it was assumed to have taken place as
soon as all the objects fell within the last two internal
states. Further, the query probability approximations
were updated after receiving every single query.

The parameters used to run the TPEOMA are also
identical to what was described [21]. With no prior
knowledge of the query probabilities available, an
educated guess for initializing τ was that it had to be

greater than τ∗ = 1
W 2

−W . The expected number of it-
erations required to obtain an estimate of τ was that it

should have a value greater than κ >
[ (

W
R

)2
−W

R

]

×R.

Algorithm 4 ProcessPenaltyEOMA({ξp}, Ai, Aj)

Input:

• The indices of the states, {ξp}; ξi and ξj are the
states associated with Ai and Aj respectively.

• The query pair 〈Ai, Aj〉.

Output:

• The next states of the Oi’s.

1: begin
2: if ξi mod N 6= 0 ∧ ξj mod N 6= 0 then ⊲ Both

are in internal states
3: ξi = ξi + 1
4: ξj = ξj + 1
5: else if ξi mod N 6= 0 then ⊲ Oi is at internal

state
6: ξi = ξi + 1
7: temp = ξj ⊲ Store the state of Oj

8: l = Index of the unaccessed object closest to
the boundary state of Oi.

9: ξl = temp
10: ξj = [(ξidivN) + 1]×N
11: else if ξj mod N 6= 0 then ⊲ Oj is at internal

state
12: ξj = ξj + 1
13: temp = ξi ⊲ Store the state of Oi

14: l = Index of the unaccessed object closest to
the boundary state of Oj .

15: ξl = temp
16: else ⊲ Both are in boundary states
17: temp = ξi ⊲ Store the state of Oi

18: ξi = ξj ⊲ Move Oi to the same group as Oj

19: l = index of an unaccessed object in group
of Oj closest to the boundary

20: ξl = temp ⊲ Move Ol to the old state of Oi

21: end if
22: return {ξp}
23: end

The simulation results are given in Table II for
the PEOMA and in Table II for the TPEOMA, both
of which are based on an ensemble of 100 runs for
various uncertainty values for p, ranging from 0.7−0.9.
We should mention that the performance significance
of the TPEOMA is, really, not noticeable for easy
problems where we had a small number of objects
and groups, but unlike the PEOMA, it can converge
nearly two times faster in environments with low level
of noise. This is significant because the difference
becomes more noticeable when the difficulty of the
problem increases. The TPEOMA also outperforms
the PEOMA in solving difficult partitioning problems.
Indeed, the results are so remarkable; the Transitive
PEOMA uses the same pursuit matrix, and is unrivaled
by any other reported variations of the OMA.

By utilizing both the internal improvements as well
as the pursuit concept in extracting transitivity rela-
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TABLE I: Experimental results for the PEOMA approach
done for an ensemble of 100 runs.

W W/R R PEOMAp9 PEOMAp8 PEOMAp7

4 2 2 (2, 23) (2, 37) (3, 44)
6 2 3 (4, 42) (4, 52) (5, 73)
- 3 2 (7, 47) (8, 62) (10, 91)
8 2 4 (6, 59) (6, 76) (8, 102)
- 4 2 (15, 73) (23, 100) (36, 145)
9 3 3 (20, 85) (24, 110) (40, 146)

10 2 5 (8, 79) (10, 102) (12, 141)
- 5 2 (26, 100) (36, 140) (54, 213)

12 2 6 (10, 97) (12, 129) (17, 181)
- 3 4 (38, 126) (55, 165) (74, 222)
- 4 3 (44, 134) (58, 165) (87, 241)
- 6 2 (34, 127) (60, 182) (110, 310)

15 3 5 (72, 174) (88, 228) (147, 308)
- 5 3 (76, 185) (105, 249) (155, 348)

18 2 9 (19, 166) (26, 218) (36, 323)
- 3 6 (98, 231) (139, 310) (207, 419)
- 6 3 (118, 246) (162, 328) (239, 472)
- 9 2 (100, 236) (133, 330) (280, 553)

The results are given as a pair (a, b) where a refers
to the number of iterations for the POMA to reach the
first correct classification and b refers to the case where
the POMA has fully and accurately converged.
In all experiments, the number of states of the POMA
is set to 10.
POMApX : X refers to the Environment’s probabil-
ity of generating samples within the same class, i.e.
POMAp9 means p = 0.9.
N : Number of objects to be partitioned.
W/R: Number of objects in every class.
R: Number of classes in the partitioning problem.
The value used for τ is τ∗ = 1

W 2 , and the value used
for κ is κ∗ = R

[

(WR )2 − W
R

]

.

tions from E, the TPEOMA is capable of operating in
extremely complex (highly noisy) environments, and
solving difficult problems even faster than PEOMA.

In comparison with the original PEOMA in [21],
the Algorithm 1 also updates the states of the inferred
objects which are in the transitivity relation with
the received object pair. In summary, the introduced
modification enhances the PEOMA’s performance by
introducing a linear overhead O(W ) by looking in to
a row of W objects and choosing the objects which
are above the τt, the transitivity threshold value. This
overhead is constant for both cases when the Environ-
ment is difficult to learn or the partitioning problem
is inherently challenging.

VII. DISCUSSION

By monitoring the execution of the algorithm, it is
obvious that the argument presented in Theorem 4 be-
comes quite pertinent as the total number of divergent
query pairs is always much less than the number of
convergent pairs. Thus, the value of τ obtained by the
steps described in the previous section, can be set as a
threshold value for the TPEOMA’s accept/reject policy.

More specifically, for a pair given by E at time
t, if the corresponding estimate for the query was

TABLE II: Experimental results for the TPEOMA approach
done for an ensemble of 100 runs.

W W/R R TPEOMAp9 TPEOMAp8 TPEOMAp7

4 2 2 (2,24) (2,30) (3,40)
6 2 3 (4,41) (4,51) (5,64)
- 3 2 (6,37) (8,50) (13,74)
8 2 4 (7,57) (7,71) ( 8,91)
- 4 2 (14,50) (25,78) (41,125)
9 3 3 (19,65) (21,78) (29,113)

10 2 5 (8,75) (10,95) (14,121)
- 5 2 (26,69) (41,92) (76,178)

12 2 6 (12,95) (15,123) (18,155)
- 3 4 (30,91) (37,110) (52,155)
- 4 3 (34,86) (47,107) (66,157)
- 6 2 (43,86) (62,121) (111,209)

15 3 5 (48,123) (61,159) (81,203)
- 5 3 (51,101) (71,133) (105,205)

18 2 9 (20,156) (28,199) (36,275)
- 3 6 (66,153) (85,194) (126,283)
- 6 3 (63,126) (95,170) (136,244)
- 9 2 (77,129) (148,222) (268,391)

The results are given as a pair (a, b) where a refers to the
number of iterations for the TPEOMA to reach the first
correct classification and b refers to the case where the
TPEOMA has fully and accurately converged.
In all experiments, the number of states of the TPEOMA
is set to 10.
TPEOMApX : X refers to the Environment’s probability of
generating samples within the same class, i.e. TPEOMAp9
means p = 0.9.
N : Number of objects to be partitioned.
W/R: Number of objects in every class.
R: Number of classes in the partitioning problem.
The value used for τ is τ∗ = 1

W 2 , and the value used for
κ is κ∗ = R

[

(WR )2 − W
R

]

.

characterized by a value less than τ , the query is
treated as a divergent pair. Otherwise, the pair is
considered to contain valuable information, and the
PEOMA’s Reward/Penalty functions are invoked. By
using a quantitative approach, the pursuit paradigm
is, essentially, further capable of realizing the quality
of the incoming pairs and providing the LA with a
higher chance to receive and process the “filtered”,
more accurate, inputs. In contrast with the internal
enhancements, the pursuit paradigm’s focus is about
understanding the Environment’s characteristics.

Although the use of the Pursuit matrix to filter
out the divergent queries has been reported earlier
[20] and [21], this paper has taken a bold step to
consider the implications of its transitivity properties.
The consequence of this property is that we have
been able to create Inferred queries. In other words,
even thought the Environment is unable to provide
us with relevant information to the AI algorithm,
the transitivity property permits us to “cook up”,
or rather artificially generate, queries that mimic the
Environment’s properties. These Inferred queries have
been utilized in conjunction with the real queries to
drastically improve the performance of the learning
system.
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Fig. 3: A plot of nd, the number of objects in groups different from their true underlying partitions for the
TPEOMA, as the number of iterations (i.e. query pairs) proceed. Here, W = 18, R = 2 and p = 0.9.

Thus, the reader will observe that by incorporating
these two principals in conjunction with each other,
has led to superior results, and the experimental re-
sults speak for themselves.

By way of example, if the TPEOMA is com-
pared with the previously best-reported algorithm, the
PEOMA, (proposed by Shirvani et al. in [21]), one
can see that the PEOMA can solve the partitioning
problem with p = 0.9 and 3 groups with 3 objects in
each group, in 85 iterations. For the same problem,
the TPEOMA required only 65 iterations to converge.
For a difficult-to-learn Environment (p = 0.7) and a
more complex partitioning problem with 18 objects
in 3 groups, the PEOMA needed 472 iterations to
converge. The TPEOMA required only 244 iterations
to converge, which is nearly two times better than the
PEOMA.

It is pertinent to query the robustness of the pro-
posed schemes11. To consider this, rather that merely
refer to the tables, we consider the corresponding con-
vergence graphs. The convergence graph for a single
experiment of the TPEOMA is depicted in Figure 3a.
This considers the same case that was studied earlier,
in which W = 9 and R = 3. The figure depicts
the number of objects that are not correctly grouped
together with regard to the true underlying partition
at any given time instant. The TPEOMA, similar to
its predecessors, starts with a large number of objects

11We are grateful to the anonymous Referees of the earlier version
of this paper who raised this query.

in the wrong partitions, and steadily decreases this
index to smaller values. This behavior is portrayed in
Figure 3a. However, if one takes the ensemble average
of this metric over 100 experiments the performance
is much more monotonic in behavior (with almost
no random fluctuations), demonstrating the robusness
over a large set of experiments. This is clear from
Figure 3b. The reader should observe the considerable
performance that is gained by a very little additional
computational cost. Again, by comparing Tables I
and II, although the gain is not significant for simple
problems and easy Environments, it becomes remark-
ably high for complex partitioning experiments.

The performance results given above merely com-
pare the TPEOMA to the PEOMA. However, to get
an overall perspective of what we have done, a more
fair comparison would be to compare the TPEOMA
to the original OMA/EOMA. Rather than repeating
the results given in the previous papers, in all brevity
we state the following: Our results presented here
demonstrate that the TPEOMA is about two times
faster than the non-transitive versions, and probably
about nine times faster than the original OMA.

VIII. CONCLUSION

Due to the discrete nature of the partitioning prob-
lem and the way the OMA operates, one may think
that devising an algorithm which is capable of re-
warding objects without any explicit feedback from
E is, if not impossible, very complex. Also, due to
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the inherent nature of the partitioning problem, in-
creasing the performance of the OMA in near-ideal
environments would be challenging, due to the lack
of existing queries.

In this research, we have not only demonstrated
that such a mechanism exists, but we have proposed
an elegant yet simple pursuit-based solution obtaining
a linear time complexity overhead, O(W ), compared
to the original OMA algorithm. The simulation re-
sults have demonstrated that our proposed method
improves the PEOMA, the best-reported solution for
the EPP, by nearly two times, and this ratio becomes
significantly larger for complicated problems and en-
vironments. In some problems, our solution is about
nine times faster than the solution provided by the
OMA. Further, if we consider unreported problems,
the performance gain is even higher!

The core idea of the transitive approach is to predict
the behavior of E and generate Inferred queries which
would be artificially generated by E after enough
number of iterations. By taking into account such an
intuition, one can incorporate the hidden ties among
the objects, and produce virtual reward and penalty
responses based on these Inferred queries. This is
able to significantly increase the convergence ratio in
complex partitioning problems. We thus see that a
quantitative analysis of the pursuit matrix in the EPP,
in conjunction with interpreting them qualitatively,
opens up new avenues in the research of the EPP.

With regard to future work, we foresee that it would
be profitable to address broader and more complicated
sets of problems, such as the Unbalanced Partitioning
Problem (UPP), and to consider application domains
that map onto the EPP and the UPP for which the
TPEOMA provides an efficient solution.
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