
On Using Adaptive Binary Search Trees to

Enhance Self Organizing Maps

César A. Astudillo1 and B. John Oommen2

1 Universidad de Talca, Curicó, Chile
castudillo@utalca.cl

2 Carleton University, Ottawa, Canada
oommen@scs.carleton.ca

Abstract. We present a strategy by which a Self-Organizing Map (SOM)
with an underlying Binary Search Tree (BST) structure can be adap-
tively re-structured using conditional rotations. These rotations on the
nodes of the tree are local and are performed in constant time, guarantee-
ing a decrease in the Weighted Path Length (WPL) of the entire tree. As
a result, the algorithm, referred to as the Tree-based Topology-Oriented
SOM with Conditional Rotations (TTO-CONROT), converges in such a
manner that the neurons are ultimately placed in the input space so as to
represent its stochastic distribution, and additionally, the neighborhood
properties of the neurons suit the best BST that represents the data.

1 Introduction

Even though numerous researchers have focused on deriving variants of the orig-
inal Self-Organizing Map (SOM) strategy, few of the reported results possess
the ability of modifying the underlying topology, leading to a dynamic modifica-
tion of the structure of the network by adding and/or deleting nodes and their
inter-connections. Moreover, only a small set of strategies use a tree as their
underlying data structure [1,2,3,4]. From our perspective, we believe that it is
also possible to gain a better understanding of the unknown data distribution
by performing structural tree-based modifications on the tree, by rotating the
nodes within the Binary Search Tree (BST) that holds the whole structure of
neurons. Thus, we attempt to use rotations, tree-based neighbors and the feature
space as an effort to enhance the capabilities of the SOM by representing the
underlying data distribution and its structure more accurately. Furthermore, as
a long term ambition, this might be useful for the design of faster methods for
locating the Best Matching Unit (BMU).

One of the primary goals of Adaptive Data Structures (ADS) is to seek an
optimal arrangement of the elements, by automatically reorganizing the struc-
ture itself so as to reduce the average access time. The solution to obtain the
optimal BST is well known when the access probabilities of the nodes are known
beforehand [5]. However, our research concentrates on the case when these access
probabilities are not known a priori. In this setting, the most effective solution

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 199–209, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carleton University's Institutional Repository

https://core.ac.uk/display/217571437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

200 C.A. Astudillo and B.J. Oommen

is due to Cheetham et al. and uses the concept of conditional rotations [6]. The
latter paper proposed a philosophy where an accessed element is rotated towards
the root if and only if the overall Weighted Path Length (WPL) of the resulting
BST decreases.

The strategy that we are presently proposing, namely the Tree-based Topology-
Oriented SOM with Conditional Rotations (TTO-CONROT), has a set of neu-
rons, which, like all SOM-based methods, represents the data space in a condensed
manner. Secondly, it possesses a connection between the neurons, where the neigh-
bors are based on a learned nearness measure that is tree-based. Similar to the
reported families of SOMs, a subset of neurons closest to the BMU are moved to-
wards the sample point using a vector-quantization (VQ) rule. However, unlike
most of the reported families of SOMs, the identity of the neurons that are moved
is based on the tree-based proximity (and not on the feature-space proximity). Fi-
nally, the TTO-CONROT incorporates tree-based mutating operations, namely
the above-mentioned conditional rotations.

Our proposed strategy is adaptive, with regard to the migration of the points
and with regard to the identity of the neurons moved. Additionally, the distri-
bution of the neurons in the feature space mimics the distribution of the sample
points. Lastly, by virtue of the conditional rotations, it turns out that the en-
tire tree of neurons is optimized with regard to the overall accesses, which is a
unique phenomenon (when compared to the reported family of SOMs) as far as
we know.

The contributions of the paper can be summarized as follows. First, we present
an integration of the fields of SOMs and ADS. Secondly, the neurons of the SOM
are linked together using an underlying tree-based data structure, and they are
governed by the laws of the Tree-based Topology-Oriented SOM (TTOSOM)
paradigm, and simultaneously by the restructuring adaptation provided by con-
ditional rotations (CONROT). Third, the adaptive nature of TTO-CONROT
is unique because adaptation is perceived in two forms: The migration of the
codebook vectors in the feature space is a consequence of the SOM update rule,
and the rearrangement of the neurons within the tree as a result of the rota-
tions. Finally, we explain how the set of neurons in the proximity of the BMU
is affected as a result of applying the rotations on the BST.

The rest of the paper is organized as follows. The next section surveys the rel-
evant literature, which involves both the field of SOMs including their tree-based
instantiations, and the respective field of BSTs with conditional rotations. After
that, in Section 3, we provide an in-depth explanation of the TTO-CONROT
philosophy, which is our primary contribution. The subsequent section shows
the capabilities of the approach through a series of experiments, and finally,
Section 5 concludes the paper.

2 Literature Review

A number of variants of the original SOM [7] have been presented through the
years, attempting to render the topology more flexible, so as to represent com-
plicated data distributions in a better way and/or to make the process faster by,

On Using Adaptive Binary Search Trees to Enhance Self Organizing Maps 201

for instance, speeding up the search of the BMU. We focus our attention on a
specific family of enhancements in which the neurons are inter-connected using a
tree topology [1,2,3,4]. In [1] the authors presented a tree-based SOM called the
Growing Hierarchical SOM (GHSOM), in which each node corresponds to an
independent SOM, and where dynamic behavior is manifested by adding rows
or columns to each SOM depending on a suitable criterion. The authors of [2]
have studied a variant of the SOM called the Self-Organizing Tree Map (SOTM),
which also utilizes a tree-based arrangement of the neurons, and which uses the
distance in the feature space to determine the BMU. In [3] the authors proposed
a tree-structured neural network called the evolving tree (ET), which takes ad-
vantage of a sub-optimal procedure to determine the BMU in O(log |V |) time,
where V is the set of neurons. The ET adds neurons dynamically, and incorpo-
rates the concept of a “frozen” neuron, which is a non-leaf node that does not
participate in the training process, and which is thus removed from the Bubble
of Activity (BoA).

Here, we focus on the TTOSOM [4]. The TTOSOM incorporates the SOM
with a tree which has an arbitrary number of children. Furthermore, it is assumed
that the user has the ability to describe such a tree, reflecting the a priori knowl-
edge about the structure of the data distribution1. The TTOSOM also possesses
a BoA with particular properties, considering the distance in the tree space,
where leaves and non-leaf nodes are part of this neighborhood. Another inter-
esting property displayed by the TTOSOM is its ability to reproduce the results
obtained by Kohonen [7], when the nodes of the SOM are arranged linearly, i.e.,
in a list. In this case, the TTOSOM is able to adapt this 1-dimensional grid
to a 2-dimensional (or multi-dimensional) object in the same way as the SOM
algorithm did [4]. Additionally, if the original topology of the tree followed the
overall shape of the data distribution, the results reported in [4] showed that it
is also possible to obtain a symmetric topology for the codebook vectors.

We shall now proceed to describe the corresponding relevant work in the field
of the tree-based ADS. A BST may be used to store records whose keys are
members of an ordered set. In this paper, we are in the domain where the access
probability vector is not known a priori. We seek a scheme which dynamically
rearranges itself and asymptotically generates a tree which minimizes the access
cost of the keys.

The primitive tree restructuring operation used in most BST schemes is the well
known operation of Rotation [8]. A few memory-less tree reorganizing schemes2

which use this operation have been presented in the literature. In the Move-to-
Root Heuristic [12], each time a record is accessed, rotations are performed on it
in an upwards direction until it becomes the root of the tree. On the other hand,
the simple Exchange rule [12] rotates the accessed element one level towards the
root. Sleator and Tarjan [13] introduced a technique, which also moves the ac-
cessed record up to the root of the tree using a restructuring operation. Their

1 The beauty of such an arrangement is that the data can be represented in multiple
ways depending on the specific perspective of the user.

2 This review is necessary brief. A more detailed version is found in [9,10,11].

202 C.A. Astudillo and B.J. Oommen

structure, called the Splay Tree, was shown to have an amortized time complexity
of O(log N) for a complete set of tree operations. The literature also records vari-
ous schemes which adaptively restructure the tree with the aid of additional mem-
ory locations. Prominent among them is the Monotonic Tree [14] and Mehlhorn’s
D-Tree [15]. In spite of all their advantages, all of the schemes mentioned above
have drawbacks, some of which are more serious than others.

This paper focuses on a particular heuristic, namely, the Conditional Rota-
tions (CONROT-BST) [6], which has been shown to reorganize a BST so as
to asymptotically arrive at an optimal form. CONROT-BST only requires the
maintenance and processing of the values stored at a specific node and its direct
neighbors, i.e. its parent and both children, if they exist. Algorithm 1, formally
given below, describes the process of the Conditional Rotation for a BST. The
algorithm receives two parameters, the first of which corresponds to a pointer to
the root of the tree, and the second which corresponds to the key to be searched
(assumed to be present in the tree).

Algorithm 1. CONROT-BST(j,ki)
Input:
i) j, A pointer to the root of a binary search tree T
ii) ki, A search key, assumed to be in T
Output:
i) The restructured tree T ′

ii) A pointer to the record i containing ki

Method:
1: τj ← τj + 1
2: if ki = kj then
3: if is-left-child(j) = TRUE then
4: Ψj ← 2τj − τjR − τP (j)

5: else
6: Ψj ← 2τj − τjL − τP (j)

7: end if
8: if Ψj > 0 then
9: rotate-upwards(j)

10: recalculate-tau(j)
11: recalculate-tau(P (j))
12: end if
13: return record j
14: else
15: if ki < kj then
16: CONROT-BST(left-child(j) , ki)
17: else
18: CONROT-BST(right-child(j) , ki)
19: end if
20: end if
End Algorithm

On Using Adaptive Binary Search Trees to Enhance Self Organizing Maps 203

We define τi(n) as the total number of accesses to the subtree rooted at
node i. CONROT-BST computes the following equation to determine the value
of a quantity referred to as Ψj, for a particular node j, where:

Ψj =
{

2τj − τjR − τP (j) if j is a left child of P (j)
2τj − τjL − τP (j) if j is a right child of P (j) (1)

When Ψj is less than zero, an upward rotation is performed. The authors of [6]
have shown that this single rotation yields to a decrease in the WPL of the entire
tree. Once the rotation takes place, it is necessary to update the corresponding
counters, τ . Fortunately this task only involve the updating of τi, for the rotated
node, and the counter of its parent, τP (i). The reader will observe that all the
tasks invoked in the algorithm are performed in constant time, and in the worst
case, the recursive call is done from the root down to the leaves, leading to a
O(h) running complexity, where h is the height of the tree.

3 Merging ADS and TTOSOM

This section concentrates on the details of the integration between the fields of
ADS and the SOM. More specifically we shall concentrate on the integration
of the CONROT-BST heuristic [6] into a TTOSOM [4], both of which were
explained in the previous section. We thus obtain a new species of tree-based
SOMs which is self-arranged by performing rotations conditionally, locally
and in a constant number of steps.

As in the case of the TTOSOM [4], the Neural Distance, dN , between two
neurons is defined as the minimum number of edges required to go from one to
the other. Note however, that in the case of the TTOSOM, since the tree itself
was static, the inter-node distances can be pre-computed a priori, simplifying the
computational process. The TTO-CONROT employs a tree which is dynamically
modified, where the structure of the tree itself could change, implying that nodes
that were neighbors at any time instant may not continue to be neighbors at
the next. This renders the resultant SOM to be unique and distinct from the
state-of-the-art.

Fig. 1 presents the scenario when the node accessed is B. Observe that the
distances are depicted with dotted arrows, with an adjacent numeric index spec-
ifying the current distance from node B. Fig. 1a illustrates the situation prior
to an access, where nodes H , C and E are all at a distance of 2 from node B,
even though they are at different levels in the tree. Secondly, Fig. 1b depicts the
configuration of the tree after the rotation is performed. At this time instant, C
and E are both at distance of 3 from B, which means that they have increased
their distance to B by unity. Moreover, although node H has changed its po-
sition, its distance to B remains unmodified. Clearly, the original distances are
not necessarily preserved as a consequence of the rotation.

204 C.A. Astudillo and B.J. Oommen

(a) (b)

Fig. 1. Example of the Neural Distance before and after a rotation

A concept closely related to the neural distance, is the one referred to as the
“Bubble of Activity” (BoA) which is the subset of nodes within a distance of r
away from the node currently examined. The BoA can be formally defined as [4]

B(vi; T, r) = {v|dN (vi, v; T) ≤ r}, (2)

where vi is the node currently being examined, and v is an arbitrary node in the
tree T , whose nodes are V .

Fig. 2 depicts how the BoA differs from the one defined by the TTOSOM
as a result of applying a rotation. Fig. 2a shows the BoA around the node B,
using the same configuration of the tree as in Fig. 1a, i.e., before the rotation
takes place. Here, the BoA when r = 1 involves the nodes {B, A, D, F}, and
when r = 2 the nodes contained in the bubble are {B, A, D, F, C, E, H}. Subse-
quently, considering a radius equal to 3, the resulting BoA contains the nodes
{B, A, D, F, C, E, H, G, I}. Finally, the r = 4 case leads to a BoA which includes
the whole set of nodes. Now, observe the case presented in Fig. 2b, which corre-
sponds to the BoA around B after the rotation upwards has been effected, i.e.
the same configuration of the tree used in Fig. 1b. In this case, when the radius
is unity, nodes {B, A, F} are the only nodes within the bubble, which is different
from the corresponding bubble before the rotation is invoked. Similarly, when
r = 2, we obtain a set different from the analogous pre-rotation case, which in

(a) (b)

Fig. 2. Example of BoA before and after a rotation is invoked at node B

On Using Adaptive Binary Search Trees to Enhance Self Organizing Maps 205

this case is {B, A, F, D, H}. Note that coincidentally, for the case of a radius
equal to 3, the bubbles are identical before and after the rotation, i.e., they in-
voke the nodes {B, A, D, F, G, I}. Trivially, again, when r = 4, the BoA invokes
the entire tree.

The CONROT-BST heuristic [6] requires that the tree should possess the
BST property:

Let x be a node in a BST. If y is a node in the left subtree of x, then key[y] ≤
key[x]. Further, if y is a node in the right subtree of x, then key[x] ≤ key[y].

To satisfy the BST property, first of all we see that, the tree must be binary3.
The tree trained by the TTOSOM is restricted to contain at most two children
per node and a comparison operator between the two children is considered.
This comparison can be achieved by defining a unique key that must be main-
tained for each node in the tree, and which will, in turn, allow a lexicographical
arrangement of the nodes.

It happens that the concept of the “just accessed” node in the CONROT-BST
is compatible with the corresponding BMU defined for the Competitive Learning
(CL) model. During the training phase, when a neuron is a frequent winner of
the CL, it gains prominence in the sense that it can represent more points from
the original data set. We propose that during the training phase, we can verify
if it is worth modifying the configuration of the tree by moving this neuron one
level up towards the root as per the CONROT-BST algorithm, and consequently
explicitly recording the relevant role of the particular node with respect to its
nearby neurons. CONROT-BST achieves this by performing a local movement
of the node, where only its direct parent and children are aware of the neuron
promotion.

Neural Promotion is the process by which a neuron is relocated in a more
privileged position4 in the network with respect to the other neurons in the
neural network. Thus, while “all neurons are born equal”, their importance in
the society of neurons is determined by what they represent. This is achieved,
by an explicit advancement of its rank or position.

Initialization, in the case of the BST-based TTOSOM, is accomplished in
two main steps which involve defining the initial value of each neuron and the
connections among them. The neurons can assume a starting value arbitrarily,
for instance, by placing them on randomly selected input samples. On the other
hand, a major enhancement with respect to the basic TTOSOM lays in the
way the neurons are linked together. The inclusion of the rotations renders this
dynamic.

In our proposed approach, the codebooks of the SOM correspond to the nodes
of a BST. Apart from the information regarding the codebooks themselves, each
neuron requires the maintenance of additional fields to achieve the adaptation.

3 Of course, this is a severe constraint. But we are forced to require this, because the
phenomenon of achieving conditional rotations for arbitrary k-ary trees is unsolved.
This research, however, is currently being undertaken.

4 As far as we know, we are not aware of any research which deals with the issue of
Neural Promotion. Thus, we believe that this concept, itself, is pioneering.

206 C.A. Astudillo and B.J. Oommen

Also, besides the codebook vectors, each node inherits the properties of a BST
Node, and it thus includes a pointer to the left and right children, as well as (to
make the implementation easier), a pointer to its parent. Each node also contains
a label which is able to uniquely identify the neuron when it is in the “company”
of other neurons. This identification index constitutes the lexicographical key
used to sort the nodes of the tree and remains static as time proceeds.

The training module of the TTO-CONROT is responsible for determining the
BMU, performing restructuring, calculating the BoA and migrating the neurons
within the BoA. Basically, what it achieves, is to integrate the CONROT algo-
rithm in the sequence of steps of the Training phase defined by the TTOSOM.
Algorithm 2 describes the details of how this integration is fulfilled. Algorithm 2
receives as input a sample point, x, and the pointer to the root of the tree, p.
Line No. 1, performs the first task of the algorithm, which involves the determi-
nation of the BMU. After that, line No. 2, deals with the call to the CONROT
algorithm. The reason why we follow this sequence of steps is that the parame-
ters needed to perform the conditional rotation, as specified in [6], includes the
key of the element queried, which, in the present context, corresponds to the key
of the BMU. At this stage of the algorithm, the BMU may be rotated or not,
and the BoA is determined after this restructuring process, which is performed
in lines No. 3 and 4 of the algorithm. Finally, lines No. 5 to 7, are responsible
for the neural migration, involving the movement of the neurons within the BoA
towards the input sample.

Algorithm 2. TTO-CONROT-BST train(x,p)
Input:
i) x, a sample signal.
ii) p, the pointer to the tree.
Method:
1: v ← TTOSOM Find BMU(p,x,p)
2: cond-rot-bst(p,v.getID())
3: B ← {v}
4: TTOSOM Calculate Neighborhood(B,v,radius)
5: for all b ∈ B do
6: update rule(b.getCodebook(),x)
7: end for

End Algorithm

Even though, we have used the advantages of the CONROT algorithm, the
architecture that we are proposing allows us to to utilize an alternative restruc-
turing module. Candidates which can be used to perform the adaptation are
the ones mentioned in Section 2, and include the splay and the monotonic-tree
algorithms, among others [11].

On Using Adaptive Binary Search Trees to Enhance Self Organizing Maps 207

4 Experimental Results

To illustrate the capabilities of our method, the experiments reported in the
present work are limited to the two-dimensional feature space. However, it is
important to remark that the algorithm is also capable of solving problems
in higher dimensions, though a graphical representation of the results is not
as illustrative. As per the results obtained in [4], the TTOSOM is capable of
inferring the distribution and structure of the data. In our present work, we are
interested in knowing the effects of applying the neural rotation as part of the
training process. The experiments briefly presented in this section use the same
schedule for the learning rate and radius, i.e., no particular refinement of the
parameters has been done to each particular data set.

First, we consider the data generated from a triangular-spaced distribution, as
shown in Figs. 3a-3d. In this case, the initial tree topology is unidirectional. For
the initialization phase a 1-ary tree (i.e., a list) is employed as the special case
of the structure, and the respective keys are assigned in an increasing order. At
the beginning, the prototype vectors are randomly placed. In the first iteration,
the linear topology is lost, which is attributable to the randomness of the data
points. As the prototypes are migrated and reallocated (see Figs. 3b and 3c), the
1-ary tree is modified as a consequence of the rotations. Finally, Fig. 3d depicts
the case after convergence has taken place. Here, the tree nodes are uniformly
distributed over the whole triangular shape. The BST property is still preserved,
and further rotations are still possible. This experiment serves as an excellent
example to show the differences with respect to the original TTOSOM algorithm

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) After 0 iter.

3

1
0

2

7

4

6
5

13

10

89

1211
14

(b) After 1,000.

12

4

1 0

3

2

7

6

5

10

9

8

11 13

14

(c) After 3,000.

12

4

3

1
0

2

7

6

5

10

8

9

11 13

14

(d) After 5,000.

0

1 2

3

4

5

6

7

8

9

(e) After 0 iter.

8

5

2

1

0

4 3

7

6

9

(f) After 1,000.

5

2

1

0

4

3

8

7
6

9

(g) After 3,000.

5

2
1

0

4

3

8

7

6

9

(h) After 5,000.

0

1

2

3

4

5

6

7

8

9

(i) After 0 iter.

3

1

0

2
5

4

8
7 6

9

(j) After 1,000.

3

10
2

5

4
8

67

9

(k) After 3,000.

3

1

0
2

5

4
8

7 6

9

(l) After 5,000.

Fig. 3. A 1-ary tree, i.e. a list topology, learns different distributions using the TTO-
CONROT algorithm after utilizing the same set of parameters

208 C.A. Astudillo and B.J. Oommen

[4], where a similar data set was utilized. In the case of the TTO-CONROT
the points effectively represent the whole data set. Here, no particular a priori
information about the structure of the data distribution is necessary; rather,
this is learnt during the training process, as shown in Fig. 3d. In this manner,
the specification of the initial tree topology required by the TTOSOM is no
longer needed, and an alternative specification, which only requires the number
of nodes in the initial 1-ary tree, is sufficient.

Another experiment is the one shown in Figs. 3e-3h, which entails a data set
generated from 3 circular-shaped clouds where the circles possess a different size
and density. In this experiment, again, in the first iteration, the original structure
of 1-ary tree is lost because of the random selection of the codebook vectors.
Interestingly, after convergence, and as depicted in Fig. 3h, the algorithm places
a proportional number of codebook vectors in each of the three circles according
to the density of their data points.

Lastly, Figs. 3i-3l demonstrate the power of the scheme for a linear curve.

5 Conclusions

In this paper, we have proposed a novel integration between the areas of ADS
and the SOM. In particular, we have shown how a tree-based SOM can be
adaptively transformed by the employment of an underlying BST structure and
subsequently, re-structured using rotations that are performed conditionally. Our
proposed method is able to infer the topological properties of the stochastic dis-
tribution, and at the same time, attempts to build the best BST that represents
the data set.

References

1. Rauber, A., Merkl, D., Dittenbach, M.: The Growing Hierarchical Self-Organizing
Map: exploratory analysis of high-dimensional data. IEEE Transactions on Neural
Networks 13(6), 1331–1341 (2002)

2. Guan, L.: Self-organizing trees and forests: A powerful tool in pattern clustering
and recognition. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2006, Part I. LNCS,
vol. 4141, pp. 1–14. Springer, Heidelberg (2006)

3. Pakkanen, J., Iivarinen, J., Oja, E.: The Evolving Tree — a novel self-organizing
network for data analysis. Neural Processing Letters 20(3), 199–211 (2004)

4. Astudillo, C.A., Oommen, B.J.: A novel self organizing map which utilizes imposed
tree-based topologies. In: 6th International Conference on Computer Recognition
Systems, vol. 57, pp. 169–178 (2009)

5. Knuth, D.E.: The art of computer programming, 2nd edn. Sorting and searching,
vol. 3. Addison Wesley Longman Publishing Co., Inc., Redwood City (1998)

6. Cheetham, R.P., Oommen, B.J., Ng, D.T.H.: Adaptive structuring of binary search
trees using conditional rotations. IEEE Trans. on Knowl. and Data Eng. 5(4), 695–
704 (1993)

7. Kohonen, T.: Self-Organizing Maps. Springer-Verlag New York, Inc., Secaucus
(2001)

On Using Adaptive Binary Search Trees to Enhance Self Organizing Maps 209

8. Adelson-Velskii, M., Landis, M.E.: An algorithm for the organization of informa-
tion. Sov. Math. DokL 3, 1259–1262 (1962)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. McGraw-Hill Science/Engineering/Math., New York (2001)

10. Lai, T.W.H.: Efficient maintenance of binary search trees. PhD thesis, University
of Waterloo, Waterloo, Ont., Canada (1990)

11. Astudillo, C.A., Oommen, B.J.: Self organizing maps whose topologies can be learnt
with adaptive binary search trees using conditional rotations. Journal version of
this paper (2009) (submitted for publication)

12. Allen, B., Munro, I.: Self-organizing binary search trees. J. ACM 25(4), 526–535
(1978)

13. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–
686 (1985)

14. Bitner, J.R.: Heuristics that dynamically organize data structures. SIAM J. Com-
put. 8, 82–110 (1979)

15. Mehlhorn, K.: Dynamic binary search. SIAM Journal on Computing 8(2), 175–198
(1979)

	On Using Adaptive Binary Search Trees to Enhance Self Organizing Maps
	Introduction
	Literature Review
	Merging ADS and TTOSOM
	Experimental Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

