10,363 research outputs found

    Valley Polarization in Si(100) at Zero Magnetic Field

    Full text link
    The valley splitting, which lifts the degeneracy of the lowest two valley states in a SiO2_2/(100)Si/SiO2_2 quantum well is examined through transport measurements. We demonstrate that the valley splitting can be observed directly as a step in the conductance defining a boundary between valley-unpolarized and polarized regions. This persists to well above liquid helium temperature and shows no dependence on magnetic field, indicating that single-particle valley splitting and valley-polarization exist in (100) silicon even at zero magnetic field.Comment: Accpeted for publication in Phys. Rev. Let

    Scanning Tunneling Spectroscopy of Bi2Sr2CuO6+d: New Evidence for the Common Origin of the Pseudogap and Superconductivity

    Get PDF
    Using scanning tunneling spectroscopy, we investigated the temperature dependence of the quasiparticle density of states of overdoped Bi2Sr2CuO6+ÎŽ between 275 mK and 82 K. Below Tc = 10 K, the spectra show a gap with well-defined coherence peaks at ±Δp≃12 meV, which disappear at Tc. Above Tc, the spectra display a clear pseudogap of the same magnitude, gradually filling up and vanishing at T*≃68 K. The comparison with Bi2Sr2CaCu2O8+ÎŽ demonstrates that the pseudogap and the superconducting gap scale with each other, providing strong evidence that they have a common origin

    Effects of a New Triple-alpha Reaction on X-ray Bursts of a Helium Accreting Neutron Star

    Full text link
    The effects of a new triple-α\alpha reaction rate (OKK rate) on the helium flash of a helium accreting neutron star in a binary system have been investigated. Since the ignition points determine the properties of a thermonuclear flash of type I X-ray bursts, we examine the cases of different accretion rates, dM/dt(M˙)dM/dt (\dot{M}), of helium from 3×10−10M⊙yr−13\times10^{-10} M_{\odot} \rm yr^{-1} to 3×10−8M⊙yr−13\times10^{-8} M_{\odot} \rm yr^{-1}, which could cover the observed accretion rates. We find that for the cases of low accretion rates, nuclear burnings are ignited at the helium layers of rather low densities. As a consequence, helium deflagration would be triggered for all cases of lower accretion rate than M˙≃3×10−8M⊙yr−1\dot{M}\simeq 3\times10^{-8} M_{\odot} \rm yr^{-1}. We find that OKK rate could be barely consistent with the available observations of the X-ray bursts on the helium accreting neutron star. However this coincidence is found to depend on the properties of crustal heating and the neutron star model.We suggest that OKK rate would be reduced by a factor of 102−310^{2-3} for 10810^8 K in the range of the observational errors.Comment: 10 pages, 4 figure

    Dynamics of an Acoustic Polaron in One-Dimensional Electron-Lattice System

    Full text link
    The dynamical behavior of an acoustic polaron in typical non-degenerate conjugated polymer, polydiacetylene, is numerically studied by using Su-Schrieffer-Heeger's model for the one dimensional electron-lattice system. It is confirmed that the velocity of a polaron accelerated by a constant electric field shows a saturation to a velocity close to the sound velocity of the system, and that the width of a moving polaron decreases as a monotonic function of the velocity tending to zero at the saturation velocity. The effective mass of a polaron is estimated to be about one hundred times as heavy as the bare electron mass. Furthermore the linear mode analysis in the presence of a polaron is carried out, leading to the conclusion that there is only one localized mode, i.e. the translational mode. This is confirmed also from the phase shift of extended modes. There is no localized mode corresponding to the amplitude mode in the case of the soliton in polyacetylene. Nevertheless the width of a moving polaron shows small oscillations in time. This is found to be related to the lowest odd symmetry extended mode and to be due to the finite size effect.Comment: 12 pages, latex, 9 figures (postscript figures abailble on request to [email protected]) to be published in J. Phys. Soc. Jpn. vol.65 (1996) No.

    Regulatory T cells in melanoma revisited by a computational clustering of FOXP3+ T cell subpopulations

    Get PDF
    CD4+ T cells that express the transcription factor FOXP3 (FOXP3+ T cells) are commonly regarded as immunosuppressive regulatory T cells (Treg). FOXP3+ T cells are reported to be increased in tumour-bearing patients or animals, and considered to suppress anti-tumour immunity, but the evidence is often contradictory. In addition, accumulating evidence indicates that FOXP3 is induced by antigenic stimulation, and that some non-Treg FOXP3+ T cells, especially memory-phenotype FOXP3low cells, produce proinflammatory cytokines. Accordingly, the subclassification of FOXP3+ T cells is fundamental for revealing the significance of FOXP3+ T cells in tumour immunity, but the arbitrariness and complexity of manual gating have complicated the issue. Here we report a computational method to automatically identify and classify FOXP3+ T cells into subsets using clustering algorithms. By analysing flow cytometric data of melanoma patients, the proposed method showed that the FOXP3+ subpopulation that had relatively high FOXP3, CD45RO, and CD25 expressions was increased in melanoma patients, whereas manual gating did not produce significant results on the FOXP3+ subpopulations. Interestingly, the computationally-identified FOXP3+ subpopulation included not only classical FOXP3high Treg but also memory-phenotype FOXP3low cells by manual gating. Furthermore, the proposed method successfully analysed an independent dataset, showing that the same FOXP3+ subpopulation was increased in melanoma patients, validating the method. Collectively, the proposed method successfully captured an important feature of melanoma without relying on the existing criteria of FOXP3+ T cells, revealing a hidden association between the T cell profile and melanoma, and providing new insights into FOXP3+ T cells and Treg

    ON THE LOW-TEMPERATURE ORDERING OF THE 3D ATIFERROMAGNETIC THREE-STATE POTTS MODEL

    Full text link
    The antiferromagnetic three-state Potts model on the simple-cubic lattice is studied using Monte Carlo simulations. The ordering in a medium temperature range below the critical point is investigated in detail. Two different regimes have been observed: The so-called broken sublattice-symmetry phase dominates at sufficiently low temperatures, while the phase just below the critical point is characterized by an effectively continuous order parameter and by a fully restored rotational symmetry. However, the later phase is not the permutationally sublattice symmetric phase recently predicted by the cluster variation method.Comment: 20 pages with 9 figures in a single postscript file (compressed and uuencoded by uufiles -gz -9) plus two big figures in postscript file

    Electrochemical synthesis and properties of CoO2, the x = 0 phase of the AxCoO2 systems (A = Li, Na)

    Full text link
    Single-phase bulk samples of the "exotic" CoO2, the x = 0 phase of the AxCoO2 systems (A = Li, Na), were successfully synthesized through electrochemical de-intercalation of Li from pristine LiCoO2 samples. The samples of pure CoO2 were found to be essentially oxygen stoichiometric and possess a hexagonal structure consisting of stacked triangular-lattice CoO2 layers only. The magnetism of CoO2 is featured with a temperature-independent susceptibility of the magnitude of 10-3 emu/mol Oe, being essentially identical to that of a Li-doped phase, Li0.12CoO2. It is most likely that the CoO2 phase is a Pauli-paramagnetic metal with itinerant electrons.Comment: 12 pages, 3 figure

    Using single quantum states as spin filters to study spin polarization in ferromagnets

    Full text link
    By measuring electron tunneling between a ferromagnet and individual energy levels in an aluminum quantum dot, we show how spin-resolved quantum states can be used as filters to determine spin-dependent tunneling rates. We also observe magnetic-field-dependent shifts in the magnet's electrochemical potential relative to the dot's energy levels. The shifts vary between samples and are generally smaller than expected from the magnet's spin-polarized density of states. We suggest that they are affected by field-dependent charge redistribution at the magnetic interface.Comment: 4 pages, 1 color figur

    Electronic phase diagram of the layered cobalt oxide system, LixCoO2 (0.0 <= x <= 1.0)

    Get PDF
    Here we report the magnetic properties of the layered cobalt oxide system, LixCoO2, in the whole range of Li composition, 0 <= x <= 1. Based on dc-magnetic susceptibility data, combined with results of 59Co-NMR/NQR observations, the electronic phase diagram of LixCoO2 has been established. As in the related material NaxCoO2, a magnetic critical point is found to exist between x = 0.35 and 0.40, which separates a Pauli-paramagnetic and a Curie-Weiss metals. In the Pauli-paramagnetic regime (x <= 0.35), the antiferromagnetic spin correlations systematically increase with decreasing x. Nevertheless, CoO2, the x = 0 end member is a non-correlated metal in the whole temperature range studied. In the Curie-Weiss regime (x >= 0.40), on the other hand, various phase transitions are observed. For x = 0.40, a susceptibility hump is seen at 30 K, suggesting the onset of static AF order. A magnetic jump, which is likely to be triggered by charge ordering, is clearly observed at Tt = 175 K in samples with x = 0.50 (= 1/2) and 0.67 (= 2/3), while only a tiny kink appears at T = 210 K in the sample with an intermediate Li composition, x = 0.60. Thus, the phase diagram of the LixCoO2 system is complex, and the electronic properties are sensitively influenced by the Li content (x).Comment: 29 pages, 1 table, 9 figure
    • 

    corecore