79 research outputs found

    A Simple Dose Regimen of Artesunate and Amodiaquine Based on Age or Body Weight Range for Uncomplicated Falciparum Malaria in Children: Comparison of Therapeutic Efficacy With Standard Dose Regimen of Artesunate and Amodiaquine and Artemether–Lumefantrine

    Get PDF
    A new dose regimen of artesunate and amodiaquine (NDRAA) based on age or body weight range was compared with standard dose regimen of artesunate and amodiaquine (SDRAA) calculated according to body weight and with fixed-dose artesunate–amodiaquine (FDAA) and artemether–lumefantrine (AL) in 304 children afflicted by malaria aged 15 years or younger. In initial comparison (n = 208), children on NDRAA received 1–3 times amodiaquine per kilogram of body weight and 1–1.5 times of artesunate per kilogram of body weight compared with those receiving SDRAA. Parasite but not fever clearance was significantly faster in children who received NDRAA (19.4 ± 8.4 hours vs. 24.6 ± 15.5 hours, P = 0.003). Polymerase chain reaction–uncorrected cure rates on days 28–42 were also significantly higher in children who received NDRAA (P < 0.02 in all cases). Therapeutic responses in children younger than 5 years (n = 96) treated with NDRAA, FDAA, and AL were similar. Changes in hematocrit values and reported adverse events after commencing therapy were similar in those who received NDRAA and SDRAA. All drug regimens were well tolerated. NDRAA based on age or body weight range is simple, is therapeutically superior to SDRAA calculated according to body weight, and is as efficacious as AL in children younger than 5 years

    Therapeutic Efficacy and Effects of Artesunate-Mefloquine and Mefloquine Alone on Malaria-Associated Anemia in Children with Uncomplicated Plasmodium falciparum Malaria in Southwest Nigeria

    Get PDF
    The treatment efficacy and effects of artesunate-mefloquine (AMQ) and mefloquine (MQ) on malariaassociated anemia (MAA) were evaluated in 342 children ≤ 10 years of age with uncomplicated Plasmodium falciparum malaria randomized to receive either drug/drug combination. All children recovered clinically. Fever clearance times were similar. Parasite clearance was significantly faster with AMQ (mean ± SD = 1.4 ± 0.6 days, 95% confidence interval [CI] = 1.3–1.5, P < 0.0001), but polymerase chain reaction–corrected cure rates were similar (97% versus 94%). Gametocyte carriage rates and the drug-attributable fall in hematocrit were significantly lower with AMQ (mean ± SD = 4.8 ± 3.8%, 95% CI = 3.6–6.0, P = 0.03), but the rates of resolution of MAA were similar. Both regimens were well tolerated. AMQ clears parasitemia and reduces gametocyte carriage more rapidly and causes lesser fall in hematocrit than MQ, but both regimens are effective treatment of uncomplicated P. falciparum malaria in Nigerian children

    Use of area under the curve to evaluate the effects of antimalarial drugs on malaria associated anemia after treatment

    Get PDF
    To evaluate the effects of antimalarial drugs on Plasmodium falciparum malaria associated anemia (MAA), we use the area under curve (AUC) of anemia levels after treatment as an approach to combine their duration and magnitude. The method involves numerical estimation, by trapezoidal rule, of AUC from a plot of deficit in hematocrit levels from 30% (the lower threshold of normal) versus time in anemic children. Using the method, we evaluated, in randomized trials, the effects of artesunate-mefloquine (AMQ) versus mefloquine alone (MQ), and artemether-lumefantrine (AL) versus amodiaquine-artesunate (AA) on the time-course of recovery from MAA in 109 children. Anemia resolution times were similar (10.9 ± 6.2 [SD] vs 13.3 ± 8.9 d, P = 0.2) but mean AUC was significantly lower in AMQ- compared to MQ- treated children (35.5 ± 7.1 [SEM] vs 49.8 ± 11.3 %.h, P = 0.02) indicating larger exposure to anemia in MQ-treated children. In ALand AA- treated children, both anemia resolution times (8.6 ± 5.3 [SD] vs 8.6 ± 4.8 d, P = 0.98) and mean AUC (57.1 ± 12.9 [SEM] vs 46.3 ± 8.7 %.h, P = 0.74) were similar. Estimation of AUC appears more robust than estimation of anemia resolution time in evaluating antimalarial drug effects and can be used in both observational studies and clinical trials assessing the effects of therapies on MAA

    Early variations in plasmodium falciparum dynamics in Nigerian children after treatment with two artemisinin-based combinations: implications on delayed parasite clearance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combination treatments, preferably containing an artemisinin derivative, are recommended to improve efficacy and prevent <it>Plasmodium falciparum </it>drug resistance. Artemether-lumefantrine (AL) and artesunate-amodiaquine (AA) are efficacious regimens that have been widely adopted in sub-Saharan Africa. However, most study designs ignore the effects of these regimens on peripheral parasitaemia in the first 24 hours of therapy. The study protocol was designed to evaluate more closely the early effects and the standard measures of efficacies of these two regimens.</p> <p>Methods</p> <p>In an open label, randomized controlled clinical trial, children aged 12 months to 132 months were randomized to receive AL (5-14 kg, one tablet; 15-24 kg, two tablets and 25-34 kg, three tablets twice daily) or artesunate (4 mg/kg daily) plus amodiaquine (10 mg/kg daily) for three days. Peripheral blood smears were made hourly in the first 4 hours, 8 h, 16 h, 24 h, and daily on days 2-7, and on days 7, 14, 21, 28, 35, and 42 for microscopic identification and quantification of <it>Plasmodium falciparum</it>.</p> <p>Results</p> <p>A total of 193 children were randomized to receive either AL (97) or AA (96). In children that received both medications, early response of peripheral parasitaemia showed that 42% of children who received AL and 36.7% of those who received AA had an immediate rise in peripheral parasitaemia (0-4 h after treatment) followed by a rapid fall. The rise in parasitaemia was significant and seems to suggest a mobilization of asexual parasites from the deep tissues to the periphery. Days 3, 7, 14, 28, and 42 cure rates in the per protocol (PP) population were > 90% in both groups of children. Both drug combinations were well tolerated with minimal side effects.</p> <p>Conclusion</p> <p>The study showed the high efficacy of AL and AA in Nigerian children. In addition the study demonstrated the mobilisation of asexual parasites from the deep to the periphery in the early hours of commencing ACT treatment in a subset of patients in both study groups. It is unclear whether the early parasite dynamics discovered in this study play any role in the development of drug resistance and thus it is important to further evaluate this discovery. It may be useful for studies investigating delay in parasite clearance of artemisinin derivatives as a way of monitoring the development of resistance to artemisinin to assess the early effects of the drugs on the parasites.</p

    Plasmodium falciparum gametocyte carriage, emergence, clearance and population sex ratios in anaemic and non-anaemic malarious children

    Get PDF
    Anaemia in falciparum malaria is associated with an increased risk of gametocyte carriage, but its effects on transmission have not been extensively evaluated in malarious children. Plasmodium falciparum gametocyte carriage, emergence, clearance, population sex ratios (SR) (defined as the proportion of gametocytes that are male), inbreeding rates and temporal changes in SR were evaluated in 840 malarious children. Gametocyte carriage pre-treatment was at a level of 8.1%. Anaemia at enrolment was an independent risk factor for gametocyte carriage post-treatment. The emergence of gametocytes seven days post-treatment was significantly more frequent in anaemic children (7/106 vs. 10/696, p = 0.002). In the initially detected gametocytes, the proportion of children with a male-biased SR (MBSR) (> 0.5) was significantly higher in anaemic children (6/7 vs. 3/10, p = 0.027). Pre-treatment SR and estimated inbreeding rates (proportion of a mother’s daughters fertilised by her sons) were similar in anaemic and non-anaemic children. Pre-treatment SR became more female-biased in non-anaemic children following treatment. However, in anaemic children, SR became male-biased. Anaemia was shown to significantly increase gametocyte emergence and may significantly alter the SR of emerging gametocytes. If MBSR is more infective to mosquitoes at low gametocytaemia, then these findings may have significant implications for malaria control efforts in endemic settings where malaria-associated anaemia is common

    Therapeutic Efficacy and Effects of Artemether-Lumefantrine and Artesunate-Amodiaquine Coformulated or Copackaged on Malaria-Associated Anemia in Children with Uncomplicated Plasmodium falciparum Malaria in Southwest Nigeria

    Get PDF
    The therapeutic efficacy and effects of artemether-lumefantrine (AL) and artesunate-amodiaquine coformulated (AAcf) or co-packaged (AAcp) on malaria-associated anemia (MAA) were evaluated in 285 children < 12 years of age with uncomplicated Plasmodium falciparum malaria randomized to receive one of the three drug combinations. Fever and parasite clearance times were similar in all treatment groups. Mean drug-attributable fall in hematocrit (DAFH), defined as difference between hematocrit values pre- and 3 d post- initiation of treatment, was low (< 4.5%) and rates of recovery from MAA were similar with all treatments. Mean areas under curve (AUCs) of the plot of deficit in hematocrit levels from 30% versus time in anemic children were similar in all groups. All regimens were well tolerated. AL, AAcf and AAcp cleared fever and parasitemia rapidly and had similar rates of resolution of MAA after treatment in malarious Nigerian children. * Address corresp

    Factors contributing to delay in parasite clearance in uncomplicated falciparum malaria in children

    Get PDF
    Background: Drug resistance in Plasmodium falciparum is common in many endemic and other settings but there is no clear recommendation on when to change therapy when there is delay in parasite clearance after initiation of therapy in African children. Methods: The factors contributing to delay in parasite clearance, defined as a clearance time > 2 d, in falciparum malaria were characterized in 2,752 prospectively studied children treated with anti-malarial drugs between 1996 and 2008. Results: 1,237 of 2,752 children (45%) had delay in parasite clearance. Overall 211 children (17%) with delay in clearance subsequently failed therapy and they constituted 72% of those who had drug failure, i.e., 211 of 291 children. The following were independent risk factors for delay in parasite clearance at enrolment: age less than or equal to 2 years (Adjusted odds ratio [AOR] = 2.13, 95% confidence interval [CI]1.44-3.15, P < 0.0001), presence of fever (AOR = 1.33, 95% CI = 1.04-1.69, P = 0.019), parasitaemia >50,000/ul (AOR = 2.21, 95% CI = 1.77-2.75, P < 0.0001), and enrolment before year 2000 (AOR= 1.55, 95% CI = 1.22-1.96, P < 0.0001). Following treatment, a body temperature ≥ 38°C and parasitaemia > 20000/μl a day after treatment began, were independent risk factors for delay in clearance. Non-artemisinin monotherapies were associated with delay in clearance and treatment failures, and in those treated with chloroquine or amodiaquine, with pfmdr 1/pfcrt mutants. Delay in clearance significantly increased gametocyte carriage (P < 0.0001). Conclusion: Delay in parasite clearance is multifactorial, is related to drug resistance and treatment failure in uncomplicated malaria and has implications for malaria control efforts in sub-Saharan Africa

    Detection of Alpha- and Betacoronaviruses in Frugivorous and Insectivorous Bats in Nigeria

    Get PDF
    The rise of bat-associated zoonotic viruses necessitates a close monitoring of their natural hosts. Since the detection of severe acute respiratory syndrome coronavirus (SARS-CoV), it is evident that bats are vital reservoirs of coronaviruses (CoVs). In this study, we investigated the presence of CoVs in multiple bat species in Nigeria to identify viruses in bats at high-risk human contact interfaces. Four hundred and nine bats comprising four bat species close to human habitats were individually sampled from five states in Nigeria between 2019 and 2021. Coronavirus detection was done using broadly reactive consensus PCR primers targeting the RNA-dependent RNA polymerase (RdRp) gene of CoVs. Coronavirus RNA was detected in 39 samples (9.5%, CI 95%: [7.0, 12.8]), of which 29 were successfully sequenced. The identified CoVs in Nigerian bats were from the unclassified African alphacoronavirus lineage and betacoronavirus lineage D (Nobecovirus), with one sample from Hipposideros ruber coinfected with alphacoronavirus and betacoronavirus. Different bat species roosting in similar or other places had CoVs from the same genetic lineage. The phylogenetic and evolutionary dynamics data indicated a high CoV diversity in Nigeria, while host switching may have contributed to CoV evolution. Robust sentinel surveillance is recommended to enhance our knowledge of emerging and re-emerging coronaviruses

    VGEA: an RNA viral assembly toolkit.

    Get PDF
    Next generation sequencing (NGS)-based studies have vastly increased our understanding of viral diversity. Viral sequence data obtained from NGS experiments are a rich source of information, these data can be used to study their epidemiology, evolution, transmission patterns, and can also inform drug and vaccine design. Viral genomes, however, represent a great challenge to bioinformatics due to their high mutation rate and forming quasispecies in the same infected host, bringing about the need to implement advanced bioinformatics tools to assemble consensus genomes well-representative of the viral population circulating in individual patients. Many tools have been developed to preprocess sequencing reads, carry-out de novo or reference-assisted assembly of viral genomes and assess the quality of the genomes obtained. Most of these tools however exist as standalone workflows and usually require huge computational resources. Here we present (Viral Genomes Easily Analyzed), a Snakemake workflow for analyzing RNA viral genomes. VGEA enables users to map sequencing reads to the human genome to remove human contaminants, split bam files into forward and reverse reads, carry out de novo assembly of forward and reverse reads to generate contigs, pre-process reads for quality and contamination, map reads to a reference tailored to the sample using corrected contigs supplemented by the user's choice of reference sequences and evaluate/compare genome assemblies. We designed a project with the aim of creating a flexible, easy-to-use and all-in-one pipeline from existing/stand-alone bioinformatics tools for viral genome analysis that can be deployed on a personal computer. VGEA was built on the Snakemake workflow management system and utilizes existing tools for each step: fastp (Chen et al., 2018) for read trimming and read-level quality control, BWA (Li & Durbin, 2009) for mapping sequencing reads to the human reference genome, SAMtools (Li et al., 2009) for extracting unmapped reads and also for splitting bam files into fastq files, IVA (Hunt et al., 2015) for de novo assembly to generate contigs, shiver (Wymant et al., 2018) to pre-process reads for quality and contamination, then map to a reference tailored to the sample using corrected contigs supplemented with the user's choice of existing reference sequences, SeqKit (Shen et al., 2016) for cleaning shiver assembly for QUAST, QUAST (Gurevich et al., 2013) to evaluate/assess the quality of genome assemblies and MultiQC (Ewels et al., 2016) for aggregation of the results from fastp, BWA and QUAST. Our pipeline was successfully tested and validated with SARS-CoV-2 (n = 20), HIV-1 (n = 20) and Lassa Virus (n = 20) datasets all of which have been made publicly available. VGEA is freely available on GitHub at: https://github.com/pauloluniyi/VGEA under the GNU General Public License
    corecore