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Abstract: The rise of bat-associated zoonotic viruses necessitates a close monitoring of their natural
hosts. Since the detection of severe acute respiratory syndrome coronavirus (SARS-CoV), it is evident
that bats are vital reservoirs of coronaviruses (CoVs). In this study, we investigated the presence
of CoVs in multiple bat species in Nigeria to identify viruses in bats at high-risk human contact
interfaces. Four hundred and nine bats comprising four bat species close to human habitats were
individually sampled from five states in Nigeria between 2019 and 2021. Coronavirus detection was
done using broadly reactive consensus PCR primers targeting the RNA-dependent RNA polymerase
(RdRp) gene of CoVs. Coronavirus RNA was detected in 39 samples (9.5%, CI 95%: [7.0, 12.8]),
of which 29 were successfully sequenced. The identified CoVs in Nigerian bats were from the
unclassified African alphacoronavirus lineage and betacoronavirus lineage D (Nobecovirus), with one
sample from Hipposideros ruber coinfected with alphacoronavirus and betacoronavirus. Different bat
species roosting in similar or other places had CoVs from the same genetic lineage. The phylogenetic
and evolutionary dynamics data indicated a high CoV diversity in Nigeria, while host switching may
have contributed to CoV evolution. Robust sentinel surveillance is recommended to enhance our
knowledge of emerging and re-emerging coronaviruses.
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1. Introduction

Bat (order Chiroptera) are mammals with over 1300 species across 20 families and
175 genera, accounting for over 20% of known mammalian species globally [1]. They are
widely spread in nature and play a significant role in the biological diversity of various
ecosystems [2]. Multiple studies have documented the role of bats as reservoirs of different
viral agents of public health importance, including the progenitors of SARS-CoV and SARS-
CoV-2, the causative agent for the COVID-19 pandemic [3–5]. The origin of SARS-CoV-2
and the possible role of intermediate animal host(s) in early animal-to-human transmission
are unanswered questions associated with the COVID-19 pandemic. Several studies have
revealed various CoVs in African bats [6–9]. However, there is a paucity of data on bat
CoVs in Nigeria, where we only have information on betacoronavirus infection in bats
from North-Central and South-West Nigeria [10,11].

Bats are hunted and eaten in some parts of Africa, including Nigeria [12–16]. Hunters
in Ghana (Afram plains and Volta regions) have confessed to consuming Eidolon helvum
bats with the decision to hunt bats based on their family tradition, further enhanced by
economic necessity [15]. At the same time, Rousettus aegyptiacus is heavily hunted in eastern
Nigeria, and several hunters in South-South Nigeria (Niger Delta region) were reported
to hunt bats occasionally [16]. In southwestern Nigeria, the straw-coloured fruit bat is
popular meat [12]. This close interaction between humans and bats may allow the large-
scale emergence of novel virus types and species with unpredictable pathogenicity and
clinical impacts. Thus, proactive measures, including surveillance and enhanced pathogen
discovery techniques in emerging infectious disease “hotspots”, especially when there are
no known epidemics, might improve the early recognition of potential outbreaks and the
detection of novel pathogens. This research aimed to catalogue coronavirus diversity in
Nigerian bats, a critical component for public health measures to prevent future outbreaks
that other bat coronaviruses may cause.

2. Materials and Methods
2.1. Study Area and Sample Collection

Samples were collected from insectivorous and free-ranging fruit bats in five states in
Nigeria between November 2019 and May 2021 (Figure 1). Bats were trapped around fruit
trees and human dwellings using harp traps and mist nets. Each captured bat was assessed,
and morphological characteristics such as weight (g), forearm and tibia length (mm), sex,
reproductive state, and age were recorded to determine bat species. Oral and rectal swabs
were collected and placed into tubes containing 1 mL of virus transport medium. A
few of the trapped bats were humanely euthanised under a veterinarian’s supervision in
full compliance with the local ethical and legal guidelines, and voucher specimens were
collected. All experiments were conducted in a microbiological safety station with personal
protective equipment, a mask, and a visor. All samples were immediately transferred
to −20 ◦C containers before being transported to the laboratory at the African Centre of
Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Nigeria
and stored at −80 ◦C until processed.

2.2. Nucleic Acid Extraction

Total RNA was extracted from oral and rectal swabs using the QIAamp® Viral RNA
extraction kit (Qiagen®, Hilden, Germany) according to the manufacturer’s instructions
with an elution volume of 60 µL. According to the manufacturer’s manual, DNA was
isolated from faecal swabs using the DNeasy Blood and Tissue Kit (#69506; Qiagen).
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2.3. Molecular Confirmation of Bat Species

Bat host species identification was confirmed for each bat in which coronavirus was de-
tected by selectively amplifying segments of vertebrate mitochondrial cytochrome oxidase
subunit 1 (COI) and cytochrome b (Cyt b) mtDNA [17]. Briefly, a fragment of approxi-
mately 700 bp of COI (primer pair COI_long-f 5′-AACCACAAAGACATTGGCAC-3′ and
COI_long-r 5′-AAGAATCAGAATARGTGTTG-3′) and 520 bp of Cytb (primer pair Cytb-f 5′-
GAGGMCAAATATCATTCTGAGG-3′ and Cytb-r 5′-TAGGGCVAGGACTCCTCCTAGT-3′)
was amplified. PCR products were purified using the QIAquick® Gel and PCR Clean-up
kit and sequenced directly using an automated ABI 3500xl DNA Sequencer at ACEGID,
Redeemer’s University, Ede, Nigeria. Nucleotide sequences were edited using BioEdit
Sequence Alignment Editor Version 7.2.6, and a BLASTn search was done to identify
bat species. For samples with low similarity (<90%) hits with sequences in GenBank, an
alignment with reference sequences was done using the MUSCLE program in MEGA 11
software with default settings [18,19], and phylogenetic trees were constructed using the
maximum likelihood method.

2.4. RT-PCR Screening for Detection of Coronavirus RNA using Heminested
Reverse-Transcription PCR (RT-PCR) and Sanger Sequencing

The detection of bat coronaviruses was done using heminested reverse-transcription
PCR (RT-PCR) with broadly reactive consensus PCR primers targeting the RNA-dependent
RNA polymerase (RdRp) gene of different CoVs as previously described [10]. The synthesis
of cDNA was carried out using Superscript IV First-Strand Synthesis kit (Invitrogen)
followed by the nested PCR. The amplified product of 328 bp was visualised using 2%
agarose gel electrophoresis. The RdRp PCR products were purified using the QIAquickn®

Gel and PCR Clean-up kit and sequenced directly using an automated ABI 3500xl DNA
Sequencer available at ACEGID.

2.5. Phylogenetic Analysis

MAFFT online service [20] was used to align the sequences, and MEGA version 11 [19]
was used to build a phylogenetic tree using the maximum likelihood with the gamma-
distributed Hasegawa–Kishino–Yano (HKY+G) model [21], with 1000 bootstrap replications
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to assess phylogenetic robustness. The tree was visualised using Interactive Tree of Life
(iTOL) v5 [22]. We aligned every unique pair of sequences, estimated sequence pairwise
identity between sequences from our work, and published references using the Sequence
Demarcation Tool (SDT) [23].

Phylogenetic trees were also generated by IQ-TREE version 1.6.12 5 [24] using a
partition model [25] with ModelFinder [26] and ultrafast bootstrap (1000 replicates) [27] to
explore the reconstruction of ancestral-state phylogeographic transmission across countries
and host species. Coding genes were partitioned into first + second and third codon
positions. Results were visualised using Microreact (https://microreact.org/ (accessed on
1 March 2022)) [28].

2.6. Statistical Analysis

The Wilson method [29] in the Epitools calculator (http://epitools.ausvet.com.au
(accessed on 1 March 2022)) was used to calculate confidence intervals for prevalence.

3. Results
3.1. Bats Samples Collected and Prevalence of Coronavirus

From 2019 to 2021, 409 bat samples were collected from six roosting sites in five states
in Nigeria (Table 1). After morphological inspection and sequence analysis of the Cyt b
and COI mtDNA, these bats were classified into four species: E. helvum, Hipposideros ruber,
Mops condylurus, and Chaerephon sp.

Table 1. Georeferenced location, percentage of samples positive for coronavirus RNA in various bat
families, and species sampled in 2019–2021.

Location Georeference Year of Sample
Collection Family/Species

Coronavirus RNA
(Prevalence, CI

(Samples Collected))

Lim, Bauchi State 10◦18′57” N,
9◦50′39” E 2019 Pteropodidae/E. helvum 0.0–11.7 (29)

Ede, Osun State 7◦45′36” N
4◦26′50′’ E 2020 Pteropodidae/E. helvum 0.0–6.5 (2)

Gboko, Benue State 7◦19′30” N
9◦0′18′’ E 2020 Molossidae/M. condylurus 22.2. 10.6–40.8 (27)

OAU-Ife, Osun State 7◦31′11′’ N
4◦31′34′’ E 2020 Pteropodidae/E. helvum 3.3. 1.1–9.2 (92)

CER-OAU-Ife, Osun State 7◦30′27′’ N
4◦31′21′’ E 2020 Hipposideridae/H. ruber 0. 0–10.7 (32)

CER-OAU-Ife, Osun State 7◦30′27′’ N
4◦31′21′’ E 2021 Hipposideridae/H. ruber 5.6. 1.9–15.1 (54)

Jos Zoo/Museum,
Plateau State

9◦54′58.6” N
8◦53′11.8′’ E 2021 Pteropodidae/E. helvum 6.6. 3.4–12.4 (122)

Paiko, Niger State 9◦26′25.6” N
6◦38′0.39” E 2021 Molossidae/Chaerephon sp. 37.3. 25.3–50.9 (51)

CI = confidence interval.

Using nested RT-PCR, coronaviruses were detected in 39 samples, giving an overall
detection rate of 9.5% (CI 95%: 7.0–12.8). The 39 samples identified as CoV positive
included 8 (6.6%) among the 122 E. helvum from the Jos roosting site, 3 (3.5%) among
the 86 H. ruber from the Ife roosting site, 3 (3.2%) among the 93 E. helvum from the Ife
roosting site, 6 (22.2%) among the 27 M. condylurus from the Gboko/Benue roosting site,
and 19 (37.3%) among the 51 Chaerephon sp. from the Paiko/Niger roosting site (Table 1).
Positive samples were detected in bats from all the roosting sites except E. helvum samples
collected in 2019 and 2020 from Bauchi and Ede. Bats positive for CoVs were captured
in May and June 2020, October–December 2020 and January–March 2021. Coronaviruses
were detected in both male and female bats irrespective of age. Coronaviruses were also

https://microreact.org/
http://epitools.ausvet.com.au
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seen in the pooled rectal and oral swabs (in the case of samples with low volume) and
unpooled rectal and oral swabs, respectively (Table 2).

3.2. Molecular Characterization of Identified CoVs and Estimation of Divergence Time

Of the 39 RT-PCR-positive bat samples screened, 29 bat samples were successfully
sequenced, and the nucleotide sequences were compared to those in the public database
using the “Blastn” algorithm of NCBI BLAST and SDT. Of the 29 newly identified CoVs,
18 belonged to alphacoronaviruses (α-CoV) and 10 to betacoronaviruses (β-CoV). One
sample from H. ruber bat (CER024_NGR) was coinfected with alphacoronavirus and beta-
coronavirus (Table 2). According to the findings, all the nucleotide sequences from β-CoV
detected in this study were 91.7–98.7% identical to the E. helvum coronavirus in lineage D
(Nobecovirus) previously reported in E. helvum bats in Cameroon, Ghana, Tanzania, and
Kenya (Figure 2a). The α-CoV nucleotide sequences were 95.94–98.61% identical to the
Alphacoronavirus genus (Chaerephon bat coronavirus) (Figure 2b).

To determine the genetic relationships between the sequenced bat CoVs from this study
and previously described CoVs, a phylogenetic analysis using the maximum likelihood
technique was performed based on 327 bp RdRp truncated sequences. Phylogenetic
analysis confirmed that all the β-CoV sequences from this study were in the Nobecovirus
lineage, while the alphacoronavirus clustered within the unclassified African α-CoV lineage
(Chaerephon bat coronavirus) (Figure 3).

The partition model tree with host trait revealed that virtually all the E. helvum infected
bats were infected with Nobecovirus, with the subgenera circulating mainly in E. helvum,
H. ruber, and Rousettu sp. bats in Africa. In contrast, the other subgenera were equally
spread in diverse bat species. All the Sarbecovirus isolates were from human hosts and
Rhinolophus sp. except a single bovine isolate (Figure 4).

For the AlphaCoV partition tree, the unclassified African lineage showed a more
diversified host species distribution, with the Chaerephon sp. having the highest distribution,
followed by M. condylurus among the Nigerian bat viruses (Figure 5). The lineage also
infected other bat species in Africa, including Chaerephon pumilus (in Eswatini and Kenya).
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Table 2. Characteristics of bats infected with coronavirus.

Sample ID Species Sex Age Location Collection Date

Type of Samples and CoV Detected

GenBank Accession NumberPooled

Rectal/Oral Oral Swab Rectal Swab

CER024_NGR 1 H. ruber Male Adult OAU-IFE/OSUN
Abandoned basement 2021 BetaCoV -ve AlphaCoV OM869913/

OM869891

OA013_NGR E. helvum Female
(lactating) Adult OAU-IFE/OSUN

(On trees) 2020 BetaCoV -ve
Positive

(Sequence not
exploitable)

OM869914

OA019_NGR E. helvum Female Juvenile OAU-IFE/OSUN
(On trees) 2020 BetaCoV -ve BetaCoV OM869915/

OM869916

OA021_NGR E. helvum Male Adult OAU-IFE/OSUN
(On trees) 2020 BetaCoV -ve

Positive
(Sequence not

exploitable)
OM869917

PL09_NGR E. helvum Male Adult JOS/PLATEAU
(On trees) 2021 BetaCoV -ve BetaCoV OM869918/

OM869919

PL017_NGR E. helvum Female Adult JOS/PLATEAU
(On trees) 2021 BetaCoV -ve

Positive
(Sequence not

exploitable)
OM869920

PL026_NGR E. helvum Male Adult JOS/PLATEAU
(On trees) 2021 BetaCoV -ve BetaCoV OM869921/

OM869922

PL039_NGR E. helvum Male Adult JOS/PLATEAU
(On trees) 2021 BetaCoV -ve

Positive
(Sequence not

exploitable)
OM869923

PL011_NGR E. helvum Female Juvenile JOS/PLATEAU
(On trees) 2021

Positive
(Sequence not

exploitable)
BetaCoV BetaCoV OM869924/

OM869925

PL035_NGR E. helvum Male Juvenile JOS/PLATEAU
(On trees) 2021 BetaCoV -ve

Positive
(Sequence not

exploitable)
OM869926

PL066_NGR E. helvum Female Adult JOS/PLATEAU
(On trees) 2021 BetaCoV OM869927

GB009_NGR M. condylurus Female Adult The ceiling of a
residential building 2020 AlphaCoV -ve AlphaCoV OM869892/

OM869896
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Table 2. Cont.

Sample ID Species Sex Age Location Collection Date

Type of Samples and CoV Detected

GenBank Accession NumberPooled

Rectal/Oral Oral Swab Rectal Swab

GB012_NGR M. condylurus Female Juvenile The ceiling of a
residential building 2020 AlphaCoV -ve AlphaCoV OM869893/

OM869898

GB013_NGR M. condylurus Female Adult The ceiling of a
residential building 2020 AlphaCoV -ve AlphaCoV OM869894/

OM869899

GB04_NGR M. condylurus Male Juvenile The ceiling of a
residential building 2020

Positive
(Sequence not

exploitable)
-ve AlphaCoV OM869895

GB010_NGR M. condylurus Female Adult The ceiling of a
residential building 2020 AlphaCoV NT NT OM869897

GB017_NGR M. condylurus Female Adult The ceiling of a
residential building 2020 AlphaCoV NT NT OM869900

NG05_NGR Chaerephon sp. Male Adult The ceiling of a
PHC facility 2021 AlphaCoV NT NT OM869901

NG07_NGR Chaerephon sp. Female Adult The ceiling of a
PHC facility 2021 AlphaCoV NT NT OM869902

NG010_NGR Chaerephon sp. Female Adult The ceiling of a
PHC facility 2021 AlphaCoV NT NT OM869903

NG014_NGR Chaerephon sp. Female Adult The ceiling of a
PHC facility 2021 AlphaCoV NT NT OM869904

NG017_NGR Chaerephon sp. Male Adult The ceiling of a
PHC facility 2021 AlphaCoV NT NT OM869905

NG019_NGR Chaerephon sp. Female Adult The ceiling of a
PHC facility 2021 AlphaCoV NT NT OM869906

NG020_NGR Chaerephon sp. Female Adult The ceiling of a
PHC facility 2021 AlphaCoV NT NT OM869907

NG022_NGR Chaerephon sp. Female Adult The ceiling of a
PHC facility 2021 AlphaCoV NT NT OM869908

NG024_NGR Chaerephon sp. Female Adult The ceiling of a
PHC facility 2021 AlphaCoV NT NT OM869909
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Table 2. Cont.

Sample ID Species Sex Age Location Collection Date

Type of Samples and CoV Detected

GenBank Accession NumberPooled

Rectal/Oral Oral Swab Rectal Swab

NG033_NGR Chaerephon sp. Female Adult The ceiling of a
PHC facility 2021 AlphaCoV NT NT OM869910

NG044_NGR Chaerephon sp. Female Juvenile The ceiling of a
PHC facility 2021 AlphaCoV NT NT OM869911

NG046_NGR Chaerephon sp. Female Juvenile The ceiling of a
PHC facility 2021 AlphaCoV NT NT OM869912

Note: 1 = coinfection with AlphaCoV and BetaCoV; -ve = negative; NT = not tested due to low sample volume; PHC = primary health care facility; OAU = Obafemi Awolowo University;
CER = Centre for Energy Research.
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4. Discussion

In this study, we analysed samples from 409 bats collected from five states in Nigeria.
We detected coronavirus RNA in 9.5% (39) specimens sampled from all bat species and
observed a high CoV diversity in Nigerian bats. Different bat species roosting in similar or
other places had CoVs from the same genetic lineage, suggesting that host switching may
contribute to CoV evolution in Nigeria. All the betacoronaviruses belonged to the E. helvum
coronavirus in lineage D (Nobecovirus). In contrast, the alphacoronavirus belonged to the
unclassified Chaerephon bat coronavirus lineage, which is the first report of this virus in
Nigerian bats.

The overall prevalence of CoV in bats of 9.5% (CI 95%: 7.0–12.8) in this study is consis-
tent with reports of CoVs in bats from Ghana, Germany, and a recent global survey of coro-
naviruses in bats, rodents, and nonhuman primates [6,30,31]. However, in previous studies
from Nigeria, infection rates were generally lower [10,11,32]. High rates were observed
in two insectivorous bat species in the family Molossidae (6/27 M. condylurus and 19/51
Chaerephon sp.). However, it is probable that the high rates observed in these bat species
may be related to the season in which the samples were obtained. Seasonal variations
in infection prevalence are most likely influenced by density fluctuations during colony
establishment or migration, affecting contact rates and disease dynamics. Furthermore,
due to continuous interaction among individuals inside a maternity roost, virus transmis-
sion is more easily facilitated during the breeding season than at other times [30,33,34].
Additionally, as previously suggested [35–37], coronavirus transmission may be aided by
the high colony density caused by the birth pulse. Subsequently, the seasonal surge of
vulnerable juveniles could speed the spread of the virus throughout the colony, including
the infection of adult bats. Thus, there is a need for data covering both breeding seasons
and nonbreeding seasons to understand how coronaviruses are maintained in the Nigerian
bat population.

Our study showed that Nigerian bats harboured phylogenetically structured CoVs, of
both α-CoV and β-CoV subclades, clustering mostly by bat family. Host specificity has been
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widely reported for some bat CoVs subgenera; whereas β-D CoVs are mostly in Pteropodidae,
β-C CoVs are associated mainly with Vespertilionidae [31,38]. Our findings of Nobecovirus
(E. helvum bat coronavirus-like cluster) dominance among Pteropodidae are consistent with
a prior study that found widespread Nobecovirus (Lineage D) circulation among fruit bats
in some African countries [11,39]. The species-specific phylogenetic clustering observed
among E. helvum bats suggests limited interspecies β-CoV transmission and host-specific
evolution among these species of bats in Nigeria. However, detecting the virus in H. ruber
in an abandoned basement around the E. helvum roosting site suggests the existence of
potentially evolving virus strains, with a possible ability to cross the species barrier.

We observed a strong geographic influence on CoV diversity within the family
Molossidae, which may have resulted from host switching. Host switching and coevolution
have been reported as influential evolutionary mechanisms for African CoVs [7,8,31,40,41].
We found that genetically related CoVs were present in other bat species. For example, the
Chaerephon bat coronavirus cluster was detected in Chaerephon sp. (Paiko, Niger state),
M. condylurus (Gboko, Benue state) and H. ruber (CER/OAU-Ife/Osun state). Similar
CoVs were seen in the same type of bat in different locations, as noted for E. helvum-like
CoVs clusters detected in E. helvum from other sites, including Jos and Ife in Plateau and
Osun states, respectively. These findings suggest that genetically diverse coronaviruses
cocirculate among bats in various regions in Nigeria.

We observed an alpha- and betacoronavirus coinfection in a single H. ruber bat. Coin-
fections have previously been documented in African R. aegyptiacus bats, Hipposideros bat
species and Asian insectivorous bats [8,42–46].

5. Conclusions

This study demonstrated high rates of CoVs in frugivorous and insectivorous bats
in Nigeria, with significant genetic diversity. Phylogenetic and evolutionary dynamics
data indicate a high CoV diversity in Nigeria, while host switching may contribute to
CoV evolution. A robust sentinel surveillance is recommended to enhance our knowledge
of emerging and re-emerging CoVs. Furthermore, future research should concentrate on
locations and bat species where bat–human contact is expected or likely to become common
due to climate change and other environmental factors.
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