13,976 research outputs found
Making aerospace technology work for the automotive industry, introduction
NASA derived technology already in use in the automotive industry include: (1) developments in electronics design, computer systems, and quality control methods for line testing of cars and trucks; (2) a combustion analysis computer program for automotive engine research and development; (3) an infrared scanner and television display for analyzing tire design and performance, and for studying the effects of heat on the service life of V-belts, shock mounts, brakes, and rubber bearings; (4) exhaust gas analyzers for trouble shooting and emissions certification; (5) a device for reducing noise from trucks; and (6) a low cost test vehicle for measuring highway skid resistance. Services offered by NASA to facilitate access to its technology are described
Nonaerospace uses of chemical rocket technology
Nonaerospace uses of chemical rocket technolog
Restoration of multichannel microwave radiometric images
A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Some of its properties and limitations are also presented. The selection of appropriate constraints was emphasized in a practical application. Multichannel microwave images, each having different spatial resolution, were restored to a common highest resolution to demonstrate the effectiveness of the method. Both noise-free and noisy images were used in this investigation
A Limited Habitable Zone for Complex Life
The habitable zone (HZ) is commonly defined as the range of distances from a
host star within which liquid water, a key requirement for life, may exist on a
planet's surface. Substantially more CO2 than present in Earth's modern
atmosphere is required to maintain clement temperatures for most of the HZ,
with several bars required at the outer edge. However, most complex aerobic
life on Earth is limited by CO2 concentrations of just fractions of a bar. At
the same time, most exoplanets in the traditional HZ reside in proximity to M
dwarfs, which are more numerous than Sun-like G dwarfs but are predicted to
promote greater abundances of gases that can be toxic in the atmospheres of
orbiting planets, such as carbon monoxide (CO). Here we show that the HZ for
complex aerobic life is likely limited relative to that for microbial life. We
use a 1D radiative-convective climate and photochemical models to circumscribe
a Habitable Zone for Complex Life (HZCL) based on known toxicity limits for a
range of organisms as a proof of concept. We find that for CO2 tolerances of
0.01, 0.1, and 1 bar, the HZCL is only 21%, 32%, and 50% as wide as the
conventional HZ for a Sun-like star, and that CO concentrations may limit some
complex life throughout the entire HZ of the coolest M dwarfs. These results
cast new light on the likely distribution of complex life in the universe and
have important ramifications for the search for exoplanet biosignatures and
technosignatures.Comment: Revised including additional discussion. Published Gold OA in ApJ. 9
pages, 5 figures, 5 table
Resolution enhancement of multichannel microwave imagery from the Nimbus-7 SMMR for maritime rainfall analysis
A restoration of the 37, 21, 18, 10.7, and 6.6 GHz satellite imagery from the scanning multichannel microwave radiometer (SMMR) aboard Nimbus-7 to 22.2 km resolution is attempted using a deconvolution method based upon nonlinear programming. The images are deconvolved with and without the aid of prescribed constraints, which force the processed image to abide by partial a priori knowledge of the high-resolution result. The restored microwave imagery may be utilized to examined the distribution of precipitating liquid water in marine rain systems
Simulations of Spinodal Nucleation in Systems with Elastic Interactions
Systems with long-range interactions quenched into a metastable state near
the pseudospinodal exhibit nucleation that is qualitatively different than the
classical nucleation observed near the coexistence curve. We have observed
nucleation droplets in our Langevin simulations of a two-dimensional model of
martensitic transformations and have determined that the structure of the
nucleating droplet differs from the stable martensite structure. Our results,
together with experimental measurements of the phonon dispersion curve, allow
us to predict the nature of the droplet. These results have implications for
nucleation in many solid-solid transitions and the structure of the final
state
MODEL BUILDING IN MULTI-FACTOR PLANT NUTRITION EXPERIMENTS
Often, the goal of plant science experiments is to model plant response as a function of quantitative treatment factors, such as the amount of nutrient applied. As the number of factors increases, modeling the response becomes increasingly challenging, especially since the resources available for such experiments are usually severely limited. Typical methods of analysis, notably second-order response surface regression, often fail to accurately explain the data. Alternatives such as non-linear models and segmented regression have been used successfully with two-factor experiments (Landes, et. aI, 1999). This paper extends previous work to three-and-more factor experiments. Models are assessed to explain the relationship between the levels of nutrients applied and leaf, root, and shoot responses of Poinsettias from an experiment conducted by horticultural researchers at the University of Nebraska-Lincoln. These data illustrate problems that are representative of those that plant researchers typically face. Multiple regression using the Hoed function proved to be especially useful. These analyses suggest a feasible approach to design of experiments suitable for a wide variety of plant science applications with multiple factors and limited resources
An Optical Study of BG Geminorum: An Ellipsoidal Binary with an Unseen Primar Star
We describe optical photometric and spectroscopic observations of the bright
variable BG Geminorum. Optical photometry shows a pronounced ellipsoidal
variation of the K0 I secondary, with amplitudes of ~0.5 mag at VRI and a
period of 91.645 days. A deep primary eclipse is visible for wavelengths <
4400A; a shallower secondary eclipse is present at longer wavelengths. Eclipse
timings and the radial velocity curve of the K0 secondary star indicate an
interacting binary where a lobe-filling secondary, M_2 ~ 0.5 Msun, transfers
material into a extended disk around a massive primary, M_1 ~ 4.5 Msun. The
primary star is either an early B-type star or a black hole. If it did contain
a black hole, BG Gem would be the longest period black hole binary known by a
factor of 10, as well as the only eclipsing black hole binary system.Comment: 27 pages, includes 8 figures and 5 tables, accepted to A
- …