50 research outputs found

    Cancer Cell Expression of Autotaxin Controls Bone Metastasis Formation in Mouse through Lysophosphatidic Acid-Dependent Activation of Osteoclasts

    Get PDF
    Bone metastases are highly frequent complications of breast cancers. Current bone metastasis treatments using powerful anti-resorptive agents are only palliative indicating that factors independent of bone resorption control bone metastasis progression. Autotaxin (ATX/NPP2) is a secreted protein with both oncogenic and pro-metastatic properties. Through its lysosphospholipase D (lysoPLD) activity, ATX controls the level of lysophosphatidic acid (LPA) in the blood. Platelet-derived LPA promotes the progression of osteolytic bone metastases of breast cancer cells. We asked whether ATX was involved in the bone metastasis process. We characterized the role of ATX in osteolytic bone metastasis formation by using genetically modified breast cancer cells exploited on different osteolytic bone metastasis mouse models.Intravenous injection of human breast cancer MDA-B02 cells with forced expression of ATX (MDA-B02/ATX) to immunodeficiency BALB/C nude mice enhanced osteolytic bone metastasis formation, as judged by increased bone loss, tumor burden, and a higher number of active osteoclasts at the metastatic site. Mouse breast cancer 4T1 cells induced the formation of osteolytic bone metastases after intracardiac injection in immunocompetent BALB/C mice. These cells expressed active ATX and silencing ATX expression inhibited the extent of osteolytic bone lesions and decreased the number of active osteoclasts at the bone metastatic site. In vitro, osteoclast differentiation was enhanced in presence of MDA-B02/ATX cell conditioned media or recombinant autotaxin that was blocked by the autotaxin inhibitor vpc8a202. In vitro, addition of LPA to active charcoal-treated serum restored the capacity of the serum to support RANK-L/MCSF-induced osteoclastogenesis.Expression of autotaxin by cancer cells controls osteolytic bone metastasis formation. This work demonstrates a new role for LPA as a factor that stimulates directly cancer growth and metastasis, and osteoclast differentiation. Therefore, targeting the autotaxin/LPA track emerges as a potential new therapeutic approach to improve the outcome of patients with bone metastases

    Identification of heparin-binding EGF-like growth factor (HB-EGF) as a biomarker for lysophosphatidic acid receptor type 1 (LPA1) activation in human breast and prostate cancers

    Get PDF
    Lysophosphatidic acid (LPA) is a natural bioactive lipid with growth factor-like functions due to activation of a series of six G protein-coupled receptors (LPA₁₋₆). LPA receptor type 1 (LPA₁) signaling influences the pathophysiology of many diseases including cancer, obesity, rheumatoid arthritis, as well as lung, liver and kidney fibrosis. Therefore, LPA₁ is an attractive therapeutic target. However, most mammalian cells co-express multiple LPA receptors whose co-activation impairs the validation of target inhibition in patients because of missing LPA receptor-specific biomarkers. LPA₁ is known to induce IL-6 and IL-8 secretion, as also do LPA₂ and LPA₃. In this work, we first determined the LPA induced early-gene expression profile in three unrelated human cancer cell lines expressing different patterns of LPA receptors (PC3: LPA₁,₂,₆; MDA-MB-231: LPA1,2; MCF-7: LPA₂,₆). Among the set of genes upregulated by LPA only in LPA₁-expressing cells, we validated by QPCR and ELISA that upregulation of heparin-binding EGF-like growth factor (HB-EGF) was inhibited by LPA₁-₃ antagonists (Ki16425, Debio0719). Upregulation and downregulation of HB-EGF mRNA was confirmed in vitro in human MDA-B02 breast cancer cells stably overexpressing LPA₁ (MDA-B02/LPA₁) and downregulated for LPA₁ (MDA-B02/shLPA1), respectively. At a clinical level, we quantified the expression of LPA₁ and HB-EGF by QPCR in primary tumors of a cohort of 234 breast cancer patients and found a significantly higher expression of HB-EGF in breast tumors expressing high levels of LPA₁. We also generated human xenograph prostate tumors in mice injected with PC3 cells and found that a five-day treatment with Ki16425 significantly decreased both HB-EGF mRNA expression at the primary tumor site and circulating human HB-EGF concentrations in serum. All together our results demonstrate that HB-EGF is a new and relevant biomarker with potentially high value in quantifying LPA₁ activation state in patients receiving anti-LPA₁ therapies

    Mécanismes de formation des métastases osseuses

    No full text
    Les métastases osseuses sont des complications fréquentes de nombreux cancers. Les cellules métastatiques présentent dans la cavité médullaire perturbent la balance naturelle (le remodelage osseux) qui existe entre la résorption osseuse, réalisée par les ostéoclastes et la formation osseuse effectuée par les ostéoblastes. Suivant la nature des nombreux facteurs qu'elles sécrÚtent (PTHrP, cytokines, ET-1, BMPs, autres...), les cellules tumorales vont stimuler soit la résorption osseuse qui va se traduire par la formation d'une métastase ostéolytique, soit la formation osseuse qui va amener à l'établissement d'une métastase ostéocondensante. Les facteurs générés au cours de la résorption et de la formation osseuse favorisent le développement tumoral. Les métastases osseuses sont alors le siÚge de cercles vicieux au niveau desquels le métabolisme osseux et le développement tumoral s'entretiennent mutuellement

    The role of platelets and megakaryocytes in bone metastasis

    Get PDF
    Blood platelets have been known for more than a century as important partners for successful metastatic dissemination of solid tumors. Cancer cell-induced platelet activation is a key event responsible for prometastatic activity of platelets. Blocking platelet aggregation inhibits the progression of skeletal metastases through mechanisms that are not fully understood. The establishment and progression of bone metastases are strongly influenced by the bone remodeling process. Growth factors and cytokines released upon platelet activation may contribute to both skeletal tumor growth and osteolytic lesions. Megakaryocytes are platelet precursors located in the bone marrow that control bone mass through direct stimulation of osteoblast functions and indirect inhibition of osteoclast activities. Considering growing evidence for their role in the metastatic cascade, platelets and/or megakaryocytes may provide new therapeutic opportunities to help limit bone metastases

    Emerging role of cysteinyl LTs in cancer

    No full text
    International audienceCysteinyl leukotrienes (CysLTs) are inflammatory lipid mediators that play a central role in the pathophysiology of several inflammatory diseases. Recently, there has been an increased interest in determining how these lipid mediators orchestrate tumour development and metastasis through promoting a pro-tumour micro-environment. Up-regulation of CysLTs receptors and CysLTs production is found in a number of cancers and has been associated with increased tumorigenesis. Understanding the molecular mechanisms underlying the role of CysLTs and their receptors in cancer progression will help investigate the potential of targeting CysLTs signalling for anti-cancer therapy. This review gives an overview of the biological effects of CysLTs and their receptors, along with current knowledge of their regulation and expression. It also provides a recent update on the molecular mechanisms that have been postulated to explain their role in tumorigenesis and on the potential of anti-CysLTs in the treatment of cancer

    Autotaxin Implication in Cancer Metastasis and Autoimunne Disorders: Functional Implication of Binding Autotaxin to the Cell Surface

    No full text
    International audienceAutotaxin (ATX) is an exoenzyme which, due to its unique lysophospholipase D activity, is responsible for the synthesis of lysophosphatidic acid (LPA). ATX activity is responsible for the concentration of LPA in the blood. ATX expression is increased in various types of cancers, including breast cancer, where it promotes metastasis. The expression of ATX is also remarkably increased under inflammatory conditions, particularly in the osteoarticular compartment, where it controls bone erosion. Biological actions of ATX are mediated by LPA. However, the phosphate head group of LPA is highly sensitive to degradation by the action of lipid phosphate phosphatases, resulting in LPA inactivation. This suggests that for efficient action, LPA requires protection, which is potentially achieved through docking to a carrier protein. Interestingly, recent reports suggest that ATX might act as a docking molecule for LPA and also support the concept that binding of ATX to the cell surface through its interaction with adhesive molecules (integrins, heparan sulfate proteoglycans) could facilitate a rapid route of delivering active LPA to its cell surface receptors. This new mechanism offers a new vision of how ATX/LPA works in cancer metastasis and inflammatory bone diseases, paving the way for new therapeutic developments

    Osteoimmunology of Bone Loss in Inflammatory Rheumatic Diseases

    Get PDF
    International audienceOver the past two decades, the field of osteoimmunology has emerged in response to a range of evidence demonstrating the reciprocal relationship between the immune system and bone. In particular, localized bone loss, in the form of joint erosions and periarticular osteopenia, as well as systemic osteoporosis, caused by inflammatory rheumatic diseases including rheumatoid arthritis, the prototype of inflammatory arthritis has highlighted the importance of this interplay. Osteoclast-mediated resorption at the interface between synovium and bone is responsible for the joint erosion seen in patients suffering from inflammatory arthritis. Clinical studies have helped to validate the impact of several pathways on osteoclast formation and activity. Essentially, the expression of pro-inflammatory cytokines as well as Receptor Activator of Nuclear factor ÎșB Ligand (RANKL) is, both directly and indirectly, increased by T cells, stimulating osteoclastogenesis and resorption through a crucial regulator of immunity, the Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). Furthermore, in rheumatoid arthritis, autoantibodies, which are accurate predictors both of the disease and associated structural damage, have been shown to stimulate the differentiation of osteoclasts, resulting in localized bone resorption. It is now also evident that osteoblast-mediated bone formation is impaired by inflammation both in joints and the skeleton in rheumatoid arthritis. This review summarizes the substantial progress that has been made in understanding the pathophysiology of bone loss in inflammatory rheumatic disease and highlights therapeutic targets potentially important for the cure or at least an alleviation of this destructive process

    Automation of the Peak Fitting Method in Bone FTIR Microspectroscopy Spectrum Analysis: Human and Mice Bone Study

    No full text
    FTIR microspectroscopy (FTIRM) is a commonly used nondestructive method to characterise thin bone sections. However, spectrum analysis methods are often highly sensitive to small variations (e.g., boundary limits), thus implying a time-consuming and redundant analysis process. To solve this issue, software has been developed based on several algorithms to automate the analysis. Furthermore, a rigorous framework has been established concerning the peak fitting method to obtain the systematic best potential solution. Validation of the automatic method has been performed by comparison with the manual method. Results and validation proved the reliability of the automatic process. The developed algorithms provide the means necessary to fully compare the results between bone FTIRM studies and between different laboratories

    Autotaxin/Lysophosphatidic Acid Axis: From Bone Biology to Bone Disorders

    No full text
    International audienceLysophosphatidic acid (LPA) is a natural bioactive phospholipid with pleiotropic activities affecting multiple tissues, including bone. LPA exerts its biological functions by binding to G-protein coupled LPA receptors (LPA1-6) to stimulate cell migration, proliferation, and survival. It is largely produced by autotaxin (ATX), a secreted enzyme with lysophospholipase D activity that converts lysophosphatidylcholine (LPC) into active LPA. Beyond its enzymatic activity, ATX serves as a docking molecule facilitating the efficient delivery of LPA to its specific cell surface receptors. Thus, LPA effects are the result of local production by ATX in a given tissue or cell type. As a consequence, the ATX/LPA axis should be considered as an entity to better understand their roles in physiology and pathophysiology and to propose novel therapeutic strategies. Herein, we provide not only an extensive overview of the relevance of the ATX/LPA axis in bone cell commitment and differentiation, skeletal development, and bone disorders, but also discuss new working hypotheses emerging from the interplay of ATX/LPA with well-established signaling pathways regulating bone mass

    Bioactive lipids and cancer metastasis to bone

    No full text
    Bioactive lipids constitute a large family of molecules considered as inflammatory mediators. Among them, lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P), and eicosanoids (prostanoids such as PGE2 and leukotrienes such as LTB4, LTC4, and LTD4) play a central role in the pathophysiology of several inflammatory diseases. However, it has long been known that these bioactive lipids are also involved in cancer, mainly because of their ability to control the pro-inflammatory microenvironment of tumors as well as their ability to act directly on tumor cells promoting cell proliferation, migration, and survival. Recently, there has been increased interest in determining how these lipid mediators orchestrate tumor development and metastasis. Bone metastases result from a complex dialogue between tumor cells and bone cells. Recent findings demonstrate that all these bioactive lipids can profoundly affect bone metabolism by acting positively or negatively on both osteoblasts and osteoclasts. This review gives an overview of previous findings demonstrating direct involvement of LPA, S1P, and PGE2 in bone metastasis. This review also emphasizes the recent findings that characterize the activity of these bioactive lipids directly on bone cells and how these activities could be integrated into the complex molecular mechanisms leading to bone metastasis formation and progression
    corecore