36 research outputs found

    Reduced size at birth and persisting reductions in adiposity in recent, compared with earlier, cohorts of infants born to mothers with gestational diabetes mellitus

    Get PDF
    Funder: National Institute for Health Research Cambridge Biomedical Research CentreFunder: Medical Research Council; doi: http://dx.doi.org/10.13039/501100000265; Grant(s): Unit programme: MC_UU_12015/2Abstract: Aims/hypothesis: This study aimed to explore the infancy growth trajectories of ‘recent’ and ‘earlier’ offspring of mothers with gestational diabetes mellitus (OGDM), each compared with the same control infants, and investigate whether ‘recent’ OGDM still exhibit a classical phenotype, with macrosomia and increased adiposity. Methods: Within a prospective observational birth cohort, 98 ‘earlier’ OGDM born between 2001 and 2009 were identified using 75 g oral glucose tolerance testing at 28 weeks gestation, 122 recent OGDM born between 2011 and 2013 were recruited postnatally through antenatal diabetes clinics, and 876 normal birthweight infants of mothers with no history of diabetes were recruited across the full study period as the control group. All infants followed the same study protocol (measurements at birth, 3, 12 and 24 months, including weight, length and skinfold thickness indicating adiposity, and detailed demographic data). In all cases, GDM was defined using the International Association of Diabetes and Pregnancy Study Group criteria. Results: Earlier OGDM had higher birthweight SD scores (SDS) than control infants. Conversely, recent OGDM had similar birthweight- and length SDS to control infants (mean ± SD, 0.1 ± 1.0 and− 0.1 ± 0.9, respectively), but lower mean skinfold thickness SDS (−0.4 ± 0.6 vs 0.0 ± 0.9; p < 0.001). After birth, earlier OGDM showed reduced gains in weight and length between 3 and 12 months. In contrast, recent OGDM had increased weight and skinfold thickness gains until 3 months, followed by reduced gains in those variables from 3 to 12 months, compared with control infants. At 24 months, recent OGDM had lower adiposity than control infants (mean skinfold thickness SDS −0.3 ± 0.7 vs 0.0 ± 0.8; p < 0.001). At all time points recent OGDM had lower growth measurements than earlier OGDM. Conclusions/interpretation: Recent OGDM showed different growth trajectories to the earlier group, namely normalisation of birthweight and reduced adiposity at birth, followed by initial rapid weight gain but subsequent reduced adiposity postnatally. While avoidance of macrosomia at birth may be advantageous, the longer-term health implications of these changing growth trajectories are uncertain

    Extensive Study of Breast Milk and Infant Growth: Protocol of the Cambridge Baby Growth and Breastfeeding Study (CBGS-BF).

    Get PDF
    Funder: Medical Research Council; Grant(s): Unit programmes: MC_UU_12015/2 and MC_UU_00006/2Funder: Wellcome TrustGrowth and nutrition during early life have been strongly linked to future health and metabolic risks. The Cambridge Baby Growth Study (CBGS), a longitudinal birth cohort of 2229 mother-infant pairs, was set up in 2001 to investigate early life determinant factors of infant growth and body composition in the UK setting. To carry out extensive profiling of breastmilk intakes and composition in relation to infancy growth, the Cambridge Baby Growth and Breastfeeding Study (CBGS-BF) was established upon the original CBGS. The strict inclusion criteria were applied, focusing on a normal birth weight vaginally delivered infant cohort born of healthy and non-obese mothers. Crucially, only infants who were exclusively breastfed for the first 6 weeks of life were retained in the analysed study sample. At each visit from birth, 2 weeks, 6 weeks, and then at 3, 6, 12, 24, and 36 months, longitudinal anthropometric measurements and blood spot collections were conducted. Infant body composition was assessed using air displacement plethysmography (ADP) at 6 weeks and 3 months of age. Breast milk was collected for macronutrients and human milk oligosaccharides (HMO) measurements. Breast milk intake volume was also estimated, as well as sterile breastmilk and infant stool collection for microbiome study

    Human Milk Short-Chain Fatty Acid Composition is Associated with Adiposity Outcomes in Infants.

    Get PDF
    BACKGROUND: Presumed benefits of human milk (HM) in avoiding rapid infancy weight gain and later obesity could relate to its nutrient composition. However, data on breast milk composition and its relation with growth are sparse. OBJECTIVE: We investigated whether short-chain fatty acids (SCFAs), known to be present in HM and linked to energy metabolism, are associated with infancy anthropometrics. METHODS: In a prospective birth cohort, HM hindmilk samples were collected from 619 lactating mothers at 4-8 wk postnatally [median (IQR) age: 33.9 (31.3-36.5) y, body mass index (BMI) (kg/m2): 22.8 (20.9-25.2)]. Their offspring, born at 40.1 (39.1-41.0) wk gestation with weight 3.56 (3.22-3.87) kg and 51% male, were assessed with measurement of weight, length, and skinfold thickness at ages 3, 12, and 24 mo, and transformed to age- and sex-adjusted z scores. HM SCFAs were measured by 1H-nuclear magnetic resonance spectroscopy (NMR) and GC-MS. Multivariable linear regression models were conducted to analyze the relations between NMR HM SCFAs and infancy growth parameters with adjustment for potential confounders. RESULTS: NMR peaks for HM butyrate, acetate, and formic acid, but not propionate, were detected. Butyrate peaks were 17.8% higher in HM from exclusively breastfeeding mothers than mixed-feeding mothers (P = 0.003). HM butyrate peak values were negatively associated with changes in infant weight (standardized B  = -0.10, P = 0.019) and BMI (B = -0.10, P = 0.018) between 3 and 12 mo, and negatively associated with BMI (B = -0.10, P = 0.018) and mean skinfold thickness (B = -0.10, P = 0.049) at age 12 mo. HM formic acid peak values showed a consistent negative association with infant BMI at all time points (B < = -0.10, P < = 0.014), whereas HM acetate was negatively associated with skinfold thickness at 3 mo (B = -0.10, P = 0.028) and 24 mo (B = -0.10, P = 0.036). CONCLUSIONS: These results suggest that HM SCFAs play a beneficial role in weight gain and adiposity during infancy. Further knowledge of HM SCFA function may inform future strategies to support healthy growth.PP was supported by a Medical Research Council Clinical Training Fellowship (G1001995). The Cambridge Baby Growth Study has been supported by the European Union (QLK4-1999-01422), the World Cancer Research Foundation International (2004/03), the Medical Research Council (7500001180), the NIHR Cambridge Comprehensive Biomedical Research Centre, Newlife - The Charity for Disabled Children (07/20), Mothercare Foundation (RG54608), and Mead Johnson Nutrition. KKO is supported by the Medical Research Council (MC_UU_12015/2)

    Butyrate in Human Milk: Associations with Milk Microbiota, Milk Intake Volume, and Infant Growth

    No full text
    Butyrate in human milk (HM) has been suggested to reduce excessive weight and adipo-sity gains during infancy. However, HM butyrate&rsquo;s origins, determinants, and its influencing mechanism on weight gain are not completely understood. These were studied in the prospective longitudinal Cambridge Baby Growth and Breastfeeding Study (CBGS-BF), in which infants (n = 59) were exclusively breastfed for at least 6 weeks. Infant growth (birth, 2 weeks, 6 weeks, 3 months, 6 months, and 12 months) and HM butyrate concentrations (2 weeks, 6 weeks, 3 months, and 6 months) were measured. At age 6 weeks, HM intake volume was measured by deuterium-labelled water technique and HM microbiota by 16S sequencing. Cross-sectionally at 6 weeks, HM butyrate was associated with HM microbiota composition (p = 0.036) although no association with the abundance of typical butyrate producers was detected. In longitudinal analyses across all time points, HM butyrate concentrations were overall negatively associated with infant weight and adiposity, and associations were stronger at younger infant ages. HM butyrate concentration was also inversely correlated with HM intake volume, supporting a possible mechanism whereby butyrate might reduce infant growth via appetite regulation and modulation of HM intake

    Associations between maternal iron supplementation in pregnancy and offspring growth and cardiometabolic risk outcomes in infancy and childhood.

    No full text
    Funder: NIHR BioResourceIt was previously observed that maternal iron supplementation in pregnancy was associated with increased offspring size and adiposity at birth, possibly mediated through increased risk of gestational diabetes. In this study we investigated potential long-term associations of maternal iron supplementation in pregnancy with offspring growth in infancy, and growth and cardiometabolic risk factors in mid-childhood to seek evidence of nutritional programming. Using a nested case-control format, markers of growth and adiposity were measured at 3, 12 and 24 months of age in 341 infants from the Cambridge Baby Growth Study whose mothers supplemented with iron in pregnancy and 222 infants whose mothers did not. Measures of growth, glucose tolerance (using a 30 minute 1.75 g glucose/kg body weight oral glucose tolerance test), insulin sensitivity (HOMA IR) and blood pressure were collected in 122 and 79 of these children, respectively, at around 9.5 years of age. In infancy adiposity-promoting associations with maternal iron supplementation in pregnancy were evident at 3 months of age (e.g. mean difference in skinfold thickness: β = +0.15 mm, p = 0.02, in n = 341 whose mothers supplemented versus 222 that did not; waist circumference: β = +0.7 cm, p = 0.04, in n = 159 and 78, respectively) but differences lessened after this time (e.g. 3-12 month change in mean difference in skinfold thickness: β = -0.2 mm, p = 0.03, in n = 272 and 178, respectively). At ~9.5 years of age children whose mothers supplemented with iron in pregnancy had lower mean arterial blood pressures (β = -1.0 mmHg, p = 0.03, in n = 119 and 78, respectively). There were no apparent differences in markers of growth or other cardiometabolic factors. These results suggest that most of the associations of maternal iron supplementation in pregnancy on growth and adiposity evident at birth disappear during infancy, but there may be some evidence of long-term nutritional programming of blood pressure in mid-childhood.This analysis was funded by the Medical Research Council (7500001180, G1001995, U106179472); the European Union Framework 5 (QLK4-1999-01422); the Newlife Foundation for Disabled Children (07/20); the World Cancer Research Fund International (2004/03) and the Mothercare Charitable Foundation (RG54608). We also acknowledge support from National Institute for Health Research Cambridge Biomedical Research Centre. KKO is supported by the Medical Research Council (Unit Programme numbers: MC_UU_12015/2 and MC_UU_00006/2)
    corecore