1,768 research outputs found

    Cygnus A super-resolved via convex optimisation from VLA data

    Get PDF
    We leverage the Sparsity Averaging Reweighted Analysis (SARA) approach for interferometric imaging, that is based on convex optimisation, for the super-resolution of Cyg A from observations at the frequencies 8.422GHz and 6.678GHz with the Karl G. Jansky Very Large Array (VLA). The associated average sparsity and positivity priors enable image reconstruction beyond instrumental resolution. An adaptive Preconditioned Primal-Dual algorithmic structure is developed for imaging in the presence of unknown noise levels and calibration errors. We demonstrate the superior performance of the algorithm with respect to the conventional CLEAN-based methods, reflected in super-resolved images with high fidelity. The high resolution features of the recovered images are validated by referring to maps of Cyg A at higher frequencies, more precisely 17.324GHz and 14.252GHz. We also confirm the recent discovery of a radio transient in Cyg A, revealed in the recovered images of the investigated data sets. Our matlab code is available online on GitHub.Comment: 14 pages, 7 figures (3/7 animated figures), accepted for publication in MNRA

    The Tails of the Crossing Probability

    Full text link
    The scaling of the tails of the probability of a system to percolate only in the horizontal direction πhs\pi_{hs} was investigated numerically for correlated site-bond percolation model for q=1,2,3,4q=1,2,3,4.We have to demonstrate that the tails of the crossing probability far from the critical point have shape πhs(p)Dexp(cL[ppc]ν)\pi_{hs}(p) \simeq D \exp(c L[p-p_{c}]^{\nu}) where ν\nu is the correlation length index, p=1exp(β)p=1-\exp(-\beta) is the probability of a bond to be closed. At criticality we observe crossover to another scaling πhs(p)Aexp(bL[ppc]νz)\pi_{hs}(p) \simeq A \exp (-b {L [p-p_{c}]^{\nu}}^{z}). Here zz is a scaling index describing the central part of the crossing probability.Comment: 20 pages, 7 figures, v3:one fitting procedure is changed, grammatical change

    Extreme value statistics in Raman fiber lasers

    Get PDF
    We present the numerical study of the statistical properties of the partially coherent quasi-CW high-Q cavity Raman fiber laser. The statistical properties are different for the radiation generated at the spectrum center or spectral wings. It is found that rare extreme events are generated at the far spectral wings at one pass only. The mechanism of the extreme events generation is a turbulent-like four-wave mixing of numerous longitudinal generation modes. The similar mechanism of extreme waves appearance during the laser generation could be important in other types of fiber lasers

    Application of Probe Nanotechnologies for Memristor Structures Formation and Characterization

    Get PDF
    This chapter presents the results of experimental studies of the formation and investigation of the memristors by probe nanotechnologies. This chapter also perspectives and possibilities of application of local anodic oxidation and scratching probe nanolithography for the manufacture of memristors based on titanium oxide structures, nanocrystalline ZnO thin film, and vertically aligned carbon nanotubes. Memristive properties of vertically aligned carbon nanotubes, titanium oxide, and ZnO nanostructures were investigated by scanning probe microscopy methods. It is shown that nanocrystalline ZnO films manifest a stable memristor effect slightly dependent on its morphology. Titanium oxide nanoscale structures of different thicknesses obtained by local anodic oxidation demonstrate a memristive effect without the need to perform any additional electroforming operations. This experimentally confirmed the memristive switching of a two-electrode structure based on a vertically aligned carbon nanotube. These results can be used in the development of designs and technological processes of resistive random access memory (ReRAM) units based on the memristor devices

    Scanning Probe Techniques for Characterization of Vertically Aligned Carbon Nanotubes

    Get PDF
    This chapter presents the results of experimental studies of the electrical, mechanical and geometric parameters of vertically aligned carbon nanotubes (VA CNTs) using scanning probe microscopy (SPM). This chapter also presents the features and difficulties of characterization of VA CNTs in different scanning modes of the SPM. Advanced techniques for VA CNT characterization (the height, Young’s modulus, resistivity, adhesion and piezoelectric response) taking into account the features of the SPM modes are described. The proposed techniques allow to overcome the difficulties associated with the vertical orientation and high aspect ratio of nanotubes in determining the electrical and mechanical parameters of the VA CNTs by standard methods. The results can be used in the development of diagnostic methods as well as in nanoelectronics and nanosystem devices based on vertically aligned carbon nanotubes (memory elements, adhesive structures, nanoelectromechanical switches, emission structures, etc.)

    ExoMol line lists -- LIII: Empirical Rovibronic spectra of Yttrium Oxide (YO)

    Full text link
    Empirical line lists for the open shell molecule 89^{89}Y16^{16}O (yttrium oxide) and its isotopologues are presented. The line lists cover the 6 lowest electronic states: X2Σ+X {}^{2}\Sigma^{+}, A2ΠA {}^{2}\Pi, A2ΔA' {}^{2}\Delta, B2Σ+B {}^{2}\Sigma^{+}, C2ΠC {}^{2}\Pi and D2Σ+D {}^{2}\Sigma^{+} up to 60000 cm1^{-1} (<0.167<0.167 μ\mum) for rotational excitation up to J=400.5J = 400.5. An \textit{ab initio} spectroscopic model consisting of potential energy curves (PECs), spin-orbit and electronic angular momentum couplings is refined by fitting to experimentally determined energies of YO, derived from published YO experimental transition frequency data. The model is complemented by empirical spin-rotation and Λ\Lambda-doubling curves and \textit{ab initio} dipole moment and transition dipole moment curves computed using MRCI. The \textit{ab initio} PECs computed using the complete basis set limit extrapolation and the CCSD(T) method with its higher quality provide an excellent initial approximation for the refinement. Non-adiabatic coupling curves for two pairs of states of the same symmetry AA/CC and BB/DD are computed using a state-averaged CASSCF and used to built diabatic representations for the A2ΠA {}^{2}\Pi, C2ΠC {}^{2}\Pi, B2Σ+B {}^{2}\Sigma^{+} and D2Σ+D {}^{2}\Sigma^{+} curves. Calculated lifetimes of YO are tuned to agree well with the experiment, where available. The BRYTS YO line lists for are included into the ExoMol data base (www.exomol.com)
    corecore