4,057 research outputs found

    Bubbling Calabi-Yau geometry from matrix models

    Full text link
    We study bubbling geometry in topological string theory. Specifically, we analyse Chern-Simons theory on both the 3-sphere and lens spaces in the presence of a Wilson loop insertion of an arbitrary representation. For each of these three manifolds we formulate a multi-matrix model whose partition function is the vev of the Wilson loop and compute the spectral curve. This spectral curve is the reduction to two dimensions of the mirror to a Calabi-Yau threefold which is the gravitational dual of the Wilson loop insertion. For lens spaces the dual geometries are new. We comment on a similar matrix model which appears in the context of Wilson loops in AdS/CFT.Comment: 30 pages; v.2 reference added, minor correction

    Why Is Supercritical Disk Accretion Feasible?

    Full text link
    Although the occurrence of steady supercritical disk accretion onto a black hole has been speculated about since the 1970s, it has not been accurately verified so far. For the first time, we previously demonstrated it through two-dimensional, long-term radiation-hydrodynamic simulations. To clarify why this accretion is possible, we quantitatively investigate the dynamics of a simulated supercritical accretion flow with a mass accretion rate of ~10^2 L_E/c^2 (with L_E and c being, respectively, the Eddington luminosity and the speed of light). We confirm two important mechanisms underlying supercritical disk accretion flow, as previously claimed, one of which is the radiation anisotropy arising from the anisotropic density distribution of very optically thick material. We qualitatively show that despite a very large radiation energy density, E_0>10^2L_E/(4 pi r^2 c) (with r being the distance from the black hole), the radiative flux F_0 cE_0/tau could be small due to a large optical depth, typically tau 10^3, in the disk. Another mechanism is photon trapping, quantified by vE_0, where v is the flow velocity. With a large |v| and E_0, this term significantly reduces the radiative flux and even makes it negative (inward) at r<70r_S, where r_S is the Schwarzschild radius. Due to the combination of these effects, the radiative force in the direction along the disk plane is largely attenuated so that the gravitational force barely exceeds the sum of the radiative force and the centrifugal force. As a result, matter can slowly fall onto the central black hole mainly along the disk plane with velocity much less than the free-fall velocity, even though the disk luminosity exceeds the Eddington luminosity. Along the disk rotation axis, in contrast, the strong radiative force drives strong gas outflows.Comment: 8 pages, 7 figures, accepted for publication in Ap

    Super-critical Accretion Flows around Black Holes: Two-dimensional, Radiation-pressure-dominated Disks with Photon-trapping

    Full text link
    The quasi-steady structure of super-critical accretion flows around a black hole is studied based on the two-dimensional radiation-hydrodynamical (2D-RHD) simulations. The super-critical flow is composed of two parts: the disk region and the outflow regions above and below the disk. Within the disk region the circular motion as well as the patchy density structure are observed, which is caused by Kelvin-Helmholtz instability and probably by convection. The mass-accretion rate decreases inward, roughly in proportion to the radius, and the remaining part of the disk material leaves the disk to form outflow because of strong radiation pressure force. We confirm that photon trapping plays an important role within the disk. Thus, matter can fall onto the black hole at a rate exceeding the Eddington rate. The emission is highly anisotropic and moderately collimated so that the apparent luminosity can exceed the Eddington luminosity by a factor of a few in the face-on view. The mass-accretion rate onto the black hole increases with increase of the absorption opacity (metalicity) of the accreting matter. This implies that the black hole tends to grow up faster in the metal rich regions as in starburst galaxies or star-forming regions.Comment: 16 pages, 12 figures, accepted for publication in ApJ (Volume 628, July 20, 2005 issue

    Wilson Loops, Geometric Transitions and Bubbling Calabi-Yau's

    Get PDF
    Motivated by recent developments in the AdS/CFT correspondence, we provide several alternative bulk descriptions of an arbitrary Wilson loop operator in Chern-Simons theory. Wilson loop operators in Chern-Simons theory can be given a description in terms of a configuration of branes or alternatively anti-branes in the resolved conifold geometry. The representation of the Wilson loop is encoded in the holonomy of the gauge field living on the dual brane configuration. By letting the branes undergo a new type of geometric transition, we argue that each Wilson loop operator can also be described by a bubbling Calabi-Yau geometry, whose topology encodes the representation of the Wilson loop. These Calabi-Yau manifolds provide a novel representation of knot invariants. For the unknot we confirm these identifications to all orders in the genus expansion.Comment: 26 pages; v.2 typos corrected, explanations clarified; v.3 typos corrected, reference adde

    High Dynamic Range Image Watermarking Robust Against Tone-Mapping Operators

    Get PDF
    High dynamic range (HDR) images represent the future format for digital images since they allow accurate rendering of a wider range of luminance values. However, today special types of preprocessing, collectively known as tone-mapping (TM) operators, are needed to adapt HDR images to currently existing displays. Tone-mapped images, although of reduced dynamic range, have nonetheless high quality and hence retain some commercial value. In this paper, we propose a solution to the problem of HDR image watermarking, e.g., for copyright embedding, that should survive TM. Therefore, the requirements imposed on the watermark encompass imperceptibility, a certain degree of security, and robustness to TM operators. The proposed watermarking system belongs to the blind, detectable category; it is based on the quantization index modulation (QIM) paradigm and employs higher order statistics as a feature. Experimental analysis shows positive results and demonstrates the system effectiveness with current state-of-art TM algorithms

    Polaronic Heat Capacity in The Anderson - Hasegawa Model

    Get PDF
    An exact treatment of the Anderson - Hasegawa two - site model, incorporating the presence of superexchange and polarons, is used to compute the heat capacity. The calculated results point to the dominance of the lattice contribution, especially in the ferromagnetic regime. This behavior is in qualitative agreement with experimental findings.Comment: 9 pages, Revtex, 4 postscript figure

    BIons in topological string theory

    Full text link
    When many fundamental strings are stacked together, they puff up into D-branes. BIons and giant gravitons are the examples of such D-brane configurations that arise from coincident strings. We propose and demonstrate analogous transitions in topological string theory. Such transitions can also be understood in terms of the Fourier transform of D-brane amplitudes.Comment: 21 pages; v.2 references added; v.3 reference added; v.4 minor corrections; v.5 substantial rewritin

    D-branes as a Bubbling Calabi-Yau

    Full text link
    We prove that the open topological string partition function on a D-brane configuration in a Calabi-Yau manifold X takes the form of a closed topological string partition function on a different Calabi-Yau manifold X_b. This identification shows that the physics of D-branes in an arbitrary background X of topological string theory can be described either by open+closed string theory in X or by closed string theory in X_b. The physical interpretation of the ''bubbling'' Calabi-Yau X_b is as the space obtained by letting the D-branes in X undergo a geometric transition. This implies, in particular, that the partition function of closed topological string theory on certain bubbling Calabi-Yau manifolds are invariants of knots in the three-sphere.Comment: 32 pages; v.2 reference adde
    • …
    corecore