74 research outputs found

    The Tissue Microlocalisation and Cellular Expression of CD163, VEGF, HLA-DR, iNOS, and MRP 8/14 Is Correlated to Clinical Outcome in NSCLC

    Get PDF
    BACKGROUND: We have previously investigated the microlocalisation of M1 and M2 macrophages in NSCLC. This study investigated the non-macrophage (NM) expression of proteins associated with M1 and M2 macrophages in NSCLC. METHODS: Using immunohistochemistry, CD68(+) macrophages and proteins associated with either a cytotoxic M1 phenotype (HLA-DR, iNOS, and MRP 8/14), or a non-cytotoxic M2 phenotype (CD163 and VEGF) were identified. NM expression of the markers was analysed in the islets and stroma of surgically resected tumours from 20 patients with extended survival (ES) (median 92.7 months) and 20 patients with poor survival (PS) (median 7.7 months). RESULTS: The NM expression of NM-HLA-DR (p<0.001), NM-iNOS (pβ€Š=β€Š0.02) and NM-MRP 8/14 (pβ€Š=β€Š0.02) was increased in ES compared to PS patients in the tumour islets. The tumour islet expression of NM-VEGF, was decreased in ES compared to PS patients (p<0.001). There was more NM-CD163 expression (pβ€Š=β€Š0.04) but less NM-iNOS (pβ€Š=β€Š0.002) and MRP 8/14 (pβ€Š=β€Š0.01) expression in the stroma of ES patients compared with PS patients. The 5-year survival for patients with above and below median NM expression of the markers in the islets was 74.9% versus 4.7% (NM-HLA-DR p<0.001), 65.0% versus 14.6% (NM-iNOS pβ€Š=β€Š0.003), and 54.3% versus 22.2% (NM-MRP 8/14 pβ€Š=β€Š0.04), as opposed to 34.1% versus 44.4% (NM-CD163 pβ€Š=β€Š0.41) and 19.4% versus 59.0% (NM-VEGF pβ€Š=β€Š0.001). CONCLUSIONS: Cell proteins associated with M1 and M2 macrophages are also expressed by other cell types in the tumour islets and stroma of patients with NSCLC. Their tissue and cellular microlocalisation is associated with important differences in clinical outcome

    Chemokine receptor expression in tumour islets and stroma in non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously demonstrated that tumour islet infiltration by macrophages is associated with extended survival (ES) in NSCLC. We therefore hypothesised that patients with improved survival would have high tumour islet expression of chemokine receptors known to be associated with favourable prognosis in cancer. This study investigated chemokine receptor expression in the tumour islets and stroma in NSCLC.</p> <p>Methods</p> <p>We used immunohistochemistry to identify cells expressing CXCR1, CXCR2, CXCR3, CXCR4, CXCR5 and CCR1 in the tumour islets and stroma in 20 patients with surgically resected NSCLC. Correlations were made with macrophage and mast cell expression.</p> <p>Results</p> <p>There was increased expression of CXCR2, CXCR3, and CCR1 in the tumour islets of ES compared with poor survival (PS) patients (p = 0.007, 0.01, and 0.002, respectively). There was an association between 5 year survival and tumour islet CXCR2, CXCR3 and CCR1 density (p = 0.02, 0.003 and <0.001, respectively) as well as stromal CXCR3 density (p = 0.003). There was a positive correlation between macrophage density and CXCR3 expression (r<sub>s </sub>= 0.520, p = 0.02) and between mast cell density and CXCR3 expression (r<sub>s </sub>= 0.499, p = 0.03) in the tumour islets.</p> <p>Conclusion</p> <p>Above median expression of CXCR2, CXCR3 and CCR1 in the tumour islets is associated with increased survival in NSCLC, and expression of CXCR3 correlates with increased macrophage and mast cell infiltration in the tumour islets.</p

    Tumour necrosis factor-alpha expression in tumour islets confers a survival advantage in non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of TNFΞ± in cancer is complex with both pro-tumourigenic and anti-tumourigenic roles proposed. We hypothesised that anatomical microlocalisation is critical for its function.</p> <p>Methods</p> <p>This study used immunohistochemistry to investigate the expression of TNFΞ± in the tumour islets and stroma with respect to survival in 133 patients with surgically resected NSCLC.</p> <p>Results</p> <p>TNFΞ± expression was increased in the tumour islets of patients with above median survival (AMS) compared to those with below median survival (BMS)(p = 0.006), but similar in the stroma of both groups. Increasing tumour islet TNFΞ± density was a favorable independent prognostic indicator (p = 0.048) while stromal TNFΞ± density was an independent predictor of reduced survival (p = 0.007). Patients with high TNFΞ± expression (upper tertile) had a significantly higher 5-year survival compared to patients in the lower tertile (43% versus 22%, p = 0.01). In patients with AMS, 100% of TNFΞ±<sup>+ </sup>cells were macrophages and mast cells, compared to only 28% in the islets and 50% in the stroma of BMS patients (p < 0.001).</p> <p>Conclusions</p> <p>The expression of TNFΞ± in the tumour islets of patients with NSCLC is associated with improved survival suggesting a role in the host anti-tumour immunological response. The expression of TNFΞ± by macrophages and mast cells is critical for this relationship.</p

    The number and microlocalization of tumor-associated immune cells are associated with patient's survival time in non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor microenvironment is composed of tumor cells, fibroblasts, endothelial cells, and infiltrating immune cells. Tumor-associated immune cells may inhibit or promote tumor growth and progression. This study was conducted to determine whether the number and microlocalization of macrophages, mature dendritic cells and cytotoxic T cells in non-small cell lung cancer are associated with patient's survival time.</p> <p>Methods</p> <p>Ninety-nine patients with non-small cell lung cancer (NSCLC) were included in this retrospective study. Paraffin-embedded NSCLC specimens and their clinicopathological data including up to 8-year follow-up information were used. Immunohistochemical staining for CD68 (marker for macrophages), CD83 (marker for mature dendritic cells), and CD8 (marker for cytotoxic T cells) was performed and evaluated in a blinded fashion. The numbers of immune cells in tumor islets and stroma, tumor islets, or tumor stroma were counted under a microscope. Correlation of the cell numbers and patient's survival time was analyzed using the Statistical Package for the Social Sciences (version 13.0).</p> <p>Results</p> <p>The numbers of macrophages, mature dendritic cells and cytotoxic T cells were significantly more in the tumor stroma than in the tumor islets. The number of macrophages in the tumor islets was positively associated with patient's survival time, whereas the number of macrophages in the tumor stroma was negatively associated with patient's survival time in both univariate and multivariate analyses. The number of mature dendritic cells in the tumor islets and stroma, tumor islets only, or tumor stroma only was positively associated with patient's survival time in a univariate analysis but not in a multivariate analysis. The number of cytotoxic T cells in the tumor islets and stroma was positively associated with patient's survival time in a univariate analysis but not in a multivariate analysis. The number of cytotoxic T cells in the tumor islets only or stroma only was not associated with patient's survival time.</p> <p>Conclusions</p> <p>The number of macrophages in the tumor islets or stroma is an independent predictor of survival time in NSCLC patients. Counting macrophages in the tumor islets or stroma is more useful in predicting patient's survival time than counting mature dendritic cells or cytotoxic T cells.</p

    Concomitant Active Tuberculosis Prolongs Survival in Non-Small Cell Lung Cancer: A Study in a Tuberculosis-Endemic Country

    Get PDF
    BACKGROUND: Adjuvant tumor cell vaccine with chemotherapy against non-small cell lung cancer (NSCLC) shows limited clinical response. Whether it provokes effective cellular immunity in tumor microenvironment is questionable. Concomitant active tuberculosis in NSCLC (TBLC) resembles locoregional immunotherapy of tumor cell vaccine; thus, maximally enriches effective anti-tumor immunity. This study compares the survival and immunological cell profile in TBLC over NSCLC alone. METHODS: Retrospective review of NSCLC patients within 1-year-period of 2007 and follow-up till 2010. RESULTS: A total 276 NSCLC patients were included. The median survival of TBLC is longer than those of NSCLC alone (11.6 vs. 8.8 month, p<0.01). Active tuberculosis is an independent predictor of better survival with HR of 0.68 (95% CI, 0.48 ~ 0.97). Squamous cell carcinoma (SCC) (55.8 vs. 31.7%, p<0.01) is a significant risk factor for NSCLC with active TB. The median survival of SCC with active tuberculosis is significantly longer than adenocarcinoma or undetermined NSCLC with TB (14.2 vs. 6.6 and 2.8 months, p<0.05). Active tuberculosis in SCC increases the expression of CD3 (46.4 Β± 24.8 vs. 24.0 Β± 16.0, p<0.05), CXCR3 (35.1 Β± 16.4 vs. 19.2 Β± 13.3, p<0.01) and IP-10 (63.5 Β± 21.9 vs. 35.5 Β± 21.0, p<0.01), while expression of FOXP3 is decreased (3.5 Β± 0.5 vs. 13.3 Β± 3.7 p<0.05, p<0.05). Survival of SCC with high expression of CD3 (12.1 vs. 3.6 month, p<0.05) and CXCR3 (12.1 vs. 4.4 month, p<0.05) is longer than that with low expression. CONCLUSIONS: Active tuberculosis in NSCLC shows better survival outcome. The effective T lymphocyte infiltration in tumor possibly underlies the mechanism. Locoregional immunotherapy of tumor cell vaccine may deserve further researches

    Identification and manipulation of tumor associated macrophages in human cancers

    Get PDF
    Evading immune destruction and tumor promoting inflammation are important hallmarks in the development of cancer. Macrophages are present in most human tumors and are often associated with bad prognosis. Tumor associated macrophages come in many functional flavors ranging from what is known as classically activated macrophages (M1) associated with acute inflammation and T-cell immunity to immune suppressive macrophages (M2) associated with the promotion of tumor growth. The role of these functionally different myeloid cells is extensively studied in mice tumor models but dissimilarities in markers and receptors make the direct translation to human cancer difficult. This review focuses on recent reports discriminating the type of infiltrating macrophages in human tumors and the environmental cues present that steer their differentiation. Finally, immunotherapeutic approaches to interfere in this process are discussed

    Activation of Thromboxane A2 Receptor (TP) Increases the Expression of Monocyte Chemoattractant Protein -1 (MCP-1)/Chemokine (C-C motif) Ligand 2 (CCL2) and Recruits Macrophages to Promote Invasion of Lung Cancer Cells

    Get PDF
    Thromboxane synthase (TXAS) and thromboxane A2 receptor (TP), two critical components for thromboxane A2 (TXA2) signaling, have been suggested to be involved in cancer invasion and metastasis. However, the mechanisms by which TXA2 promotes these processes are still unclear. Here we show that TXA2 mimetic, I-BOP, induced monocyte chemoattractant protein -1(MCP-1)/chemokine (C-C motif) ligand 2 (CCL2) expression at both mRNA and protein levels in human lung adenocarcinoma A549 cells stably over-expressing TP receptor Ξ± isoform (A549-TPΞ±). The induction of MCP-1 was also found in other lung cancer cells H157 and H460 that express relatively high levels of endogenous TP. Using specific inhibitors of several signaling molecules and promoter/luciferase assay, we identified that transcription factor SP1 mediates I-BOP-induced MCP-1 expression. Furthermore, supernatants from I-BOP-treated A549-TPΞ± cells enhanced MCP-1-dependent migration of RAW 264.7 macrophages. Moreover, co-culture of A549 cells with RAW 264.7 macrophages induced expression of MMPs, VEGF and MCP-1 genes, and increased the invasive potential in A549 cells. These findings suggest that TXA2 may stimulate invasion of cancer cells through MCP-1-mediated macrophage recruitment

    Controversies in the management of advanced prostate cancer

    Get PDF
    For advanced prostate cancer, the main hormone treatment against which other treatments are assessed is surgical castration. It is simple, safe and effective, however it is not acceptable to all patients. Medical castration by means of luteinizing hormone-releasing hormone (LH-RH) analogues such as goserelin acetate provides an alternative to surgical castration. Diethylstilboestrol, previously the only non-surgical alternative to orchidectomy, is no longer routinely used. Castration reduces serum testosterone by around 90%, but does not affect androgen biosynthesis in the adrenal glands. Addition of an anti-androgen to medical or surgical castration blocks the effect of remaining testosterone on prostate cells and is termed combined androgen blockade (CAB). CAB has now been compared with castration alone (medical and surgical) in numerous clinical trials. Some trials show advantage of CAB over castration, whereas others report no significant difference. The author favours the view that CAB has an advantage over castration. No study has reported that CAB is less effective than castration. Of the anti-androgens which are available for use in CAB, bicalutamide may be associated with a lower incidence of side-effects compared with the other non-steroidal anti-androgens and, in common with nilutamide, has the advantage of once-daily dosing. Only one study has compared anti-androgens within CAB: bicalutamide plus LH-RH analogue and flutamide plus LH-RH analogue. At 160-week follow-up, the groups were equivalent in terms of survival and time to progression. However, bicalutamide caused significantly less diarrhoea than flutamide. Withdrawal and intermittent therapy with anti-androgens extend the range of treatment options. Β© 1999 Cancer Research Campaig

    Anti-calcification of bovine pericardium for bioprosthetic heart valves after surface modification with hyaluronic acid derivatives.

    No full text
    Surface modification of glutaraldehyde fixed bovine pericardium (GFBP) was successfully carried out with hyaluronic acid (HA) derivatives. At first, HA was chemically modified with adipic dihydrazide (ADH) to introduce hydrazide functional group into the carboxyl group of HA backbone. Then, GFBP was surface modified by grafting HA-ADH to the free aldehyde groups on the tissue and the subsequent HA-ADH hydrogel coating. HA-ADH hydrogels could be prepared through selective crosslinking at low pH between hydrazide groups of HA-ADH and crosslinkers containing succinimmidyl moieties with minimized protein denaturation. When HA-ADH hydrogels were prepared at low pH of 4.8 in the presence of erythropoietin (EPO) as a model protein, EPO release was continued up to 85% of total amount of loaded EPO for 4 days. To the contrary, only 30% of EPO was released from HA-ADH hydrogels prepared at pH=7.4, which might be due to the denaturation of EPO during the crosslinking reaction. Because the carboxyl groups on the glucuronic acid residues are recognition sites for HA degradation by hya-luronidase, the HA-ADH hydrogels degraded more slowly than HA hydrogels prepared by the crosslinking reaction of divinyl sulfone with hydroxyl groups of HA. Following a two-week subcutaneous implantation in osteopontin-null mice, clinically significant levels of calcification were observed for the positive controls without any surface modification. However, the calcification of surface modified GFBP with HA-ADH and HA-ADH hydrogels was drastically reduced by more than 85% of the positive controls. The anti-calcification effect of HA surface modification was also confirmed by microscopic analysis of explanted tissue after staining with Alizarin Red S for calcium, which followed the trend as observed with calcium quantification.X1111sciescopuskc
    • …
    corecore