48 research outputs found

    Nonaqueous Fluoride/Chloride Anion-Promoted Delamination of Layered Zeolite Precursors: Synthesis and Characterization of UCB-2

    Get PDF
    The delamination of layered zeolite precursor PREFER is demonstrated under mild nonaqueous conditions using a mixture of cetyltrimethylammonium bromide, tetrabutylammonium fluoride, and tetrabutylammonium chloride in N,N-dimethylformamide (DMF) as solvent. The delamination proceeds through a swollen material intermediate which is characterized using powder X-ray diffraction (PXRD). Subsequent addition of concentrated HCl at room temperature leads to synthesis of UCB-2 via delamination of the swollen PREFER material and is characterized using PXRD, transmission electron microscopy (TEM), and argon gas physisorption, which shows lack of microporosity in UCB-2. ^(29)Si magic angle spinning (MAS) NMR spectroscopy indicates lack of amorphization during delamination, as indicated by the entire absence of Q^2 resonances, and ^(27)Al MAS NMR spectroscopy shows exclusively tetrahedral aluminum in the framework following delamination. The delamination process requires both chloride and fluoride anions and is sensitive to solvent, working well in DMF. Experiments aimed at synthesizing UCB-2 using aqueous conditions previously used for UCB-1 synthesis leads to partial swelling and lack of delamination upon acidification. A similar lack of delamination is observed upon attempting synthesis of UCB-1 under conditions used for UCB-2 synthesis. The delamination of PREFER is reversible between delaminated and swollen states in the following manner. Treatment of as-made UCB-2 with the same reagents as used here for the swelling of PREFER causes the delaminated UCB-2 material to revert back to swollen PREFER. This causes the delaminated UCB-2 material to revert back to swollen PREFER. Altogether, these results highlight delamination as the reverse of zeolite synthesis and demonstrate the crucial role of noncovalent self-assembly involving the zeolitic framework and cations/anions/structure-directing agent and solvent during the delamination process

    Delamination of Layered Zeolite Precursors under Mild Conditions: Synthesis of UCB-1 via Fluoride/Chloride Anion-Promoted Exfoliation

    Get PDF
    New material UCB-1 is synthesized via the delamination of zeolite precursor MCM-22 (P) at pH 9 using an aqueous solution of cetyltrimethylammonium bromide, tetrabutylammonium fluoride, and tetrabutylammonium chloride at 353 K. Characterization by powder X-ray diffraction, transmission electron microscopy, and nitrogen physisorption at 77 K indicates the same degree of delamination in UCB-1 as previously reported for delaminated zeolite precursors, which require a pH of greater than 13.5 and sonication in order to achieve exfoliation. UCB-1 consists of a high degree of structural integrity via ^(29)Si MAS NMR and Fourier transform infrared spectroscopies, and no detectable formation of amorphous silica phase via transmission electron microscopy. Porosimetry measurements demonstrate a lack of hysteresis in the N_2 adsorption/desorption isotherms and macroporosity in UCB-1. The new method is generalizable to a variety of Si:Al ratios and leads to delaminated zeolite precursor materials lacking amorphization

    Structure-Directing Agent Location and Non-Centrosymmetric Structure of Fluoride-Containing Zeolite SSZ-55

    Get PDF
    Single crystals of pure silica zeolite SSZ-55 were prepared using the fluoride route. Single-crystal X-ray diffraction at a synchrotron source revealed the framework structure of the material, but the unit cell (orthorhombic a = 12.905(2) Å, b = 21.344(4) Å, c = 5.1279(10)) is too small to accommodate ordered arrays of the organic structure-directing agent. Molecular modeling was used to simulate the docking of the structure-directing agent in the channels of the material, and this revealed a strong space-filling interaction with a number of possible orientations of the organic cation. The overall non-centrosymmetric structure of the solid (spacegroup C222_1) was confirmed using second harmonic generation experiments

    Stereodivergent synthesis and relative stereostructure of the C1-C13 fragment of symbiodinolide

    Get PDF
    Four possible diastereomers of the C1-C13 fragment of symbiodinolide, which were proposed by the stereostructural analysis of the degraded product, were synthesized in a stereodivergent and stereoselective manner. The key transformations were aldol reaction of methyl acetoacetate with the aldehyde, diastereoselective reduction of the resulting β-hydroxy ketone, and the stereoinversion at the C6 position. Comparison of the (1)H NMR data between the four synthetic products and the degraded product revealed the relative stereostructure of the C1-C13 fragment of symbiodinolide

    Heteroatom-Tolerant Delamination of Layered Zeolite Precursor Materials

    Get PDF
    The synthesis of the first delaminated borosilicate layered zeolite precursor is described, along with its aluminosilicate analogue, which consists of Al-containing UCB-3 and B-containing UCB-4 from as-made SSZ-70. In addition, the delamination of PREFER (which is the precursor to ferrierite zeolite) under similar conditions yields delaminated layered zeolite precursors consisting of Al-containing UCB-5 and Ti-containing UCB-6. Multinuclear solid-state NMR spectroscopy (^(11)B and ^(27)Al), diffuse-reflectance UV-vis spectroscopy, and heteroatom/Si ratios measured via elemental analysis are consistent with a lack of heteroatom leaching from the framework following delamination. Such mild delamination conditions are achieved by swelling the zeolite precursor in a fluoride/chloride surfactant mixture in DMF solvent, followed by sonication. Powder X-ray diffraction, argon gas physisorption, and chemisorption of bulky base probes strongly suggest delamination, and demonstrate a 1.5-fold increase in the number density of external acid sites and surface area of calcined UCB-3, relative to calcined Al-SSZ-70. The synthesis of microporous pockets in materials UCB-3–UCB-5 suggests the possibility of interlayer porosity in SSZ-70, which is a layered zeolite precursor material whose structure remains currently unknown. The mildness of the delamination method presented here, as well as the lack of need for acidification in the synthesis procedure, enables the delamination of heteroatom-containing zeolites while preserving the framework integrity of labile heteroatoms, which could otherwise be leached under harsher conditions

    脳認知ロボティックスによる橋梁診断スキームの構築

    Get PDF
    次の論文は、著作権の関係により非公開としております。\nP3~P11 : Mathematical analysis of the Accordion Grating illusion: A differential geometry approach to introduce the 3D aperture problem\nP12~P17 : A new psychophysical estimation of the receptive field size\nP120~P133 : Multiscale sampling model for motion integration\nP134~P144 : Object-centered reference frames in depth as revealed byinduced motion\nP145~P164 : Neural dynamics of feedforward and feedback processing in figure-ground segregatio

    Deciphering colorectal cancer genetics through multi-omic analysis of 100,204 cases and 154,587 controls of European and east Asian ancestries

    Get PDF
    In the version of this article initially published, the author affiliations incorrectly listed “Candiolo Cancer Institute FPO-IRCCS, Candiolo (TO), Italy” as “Candiolo Cancer Institute, Candiolo, Italy.” The change has been made to the HTML and PDF versions of the article

    Fine-mapping analysis including over 254,000 East Asian and European descendants identifies 136 putative colorectal cancer susceptibility genes

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 200 common genetic variants independently associated with colorectal cancer (CRC) risk, but the causal variants and target genes are mostly unknown. We sought to fine-map all known CRC risk loci using GWAS data from 100,204 cases and 154,587 controls of East Asian and European ancestry. Our stepwise conditional analyses revealed 238 independent association signals of CRC risk, each with a set of credible causal variants (CCVs), of which 28 signals had a single CCV. Our cis-eQTL/mQTL and colocalization analyses using colorectal tissue-specific transcriptome and methylome data separately from 1299 and 321 individuals, along with functional genomic investigation, uncovered 136 putative CRC susceptibility genes, including 56 genes not previously reported. Analyses of single-cell RNA-seq data from colorectal tissues revealed 17 putative CRC susceptibility genes with distinct expression patterns in specific cell types. Analyses of whole exome sequencing data provided additional support for several target genes identified in this study as CRC susceptibility genes. Enrichment analyses of the 136 genes uncover pathways not previously linked to CRC risk. Our study substantially expanded association signals for CRC and provided additional insight into the biological mechanisms underlying CRC development
    corecore