Stereodivergent Synthesis and Relative Stereostructure of the C1-C13 Fragment of Symbiodinolide

Hiroyoshi Takamura, ${ }^{,}{ }^{\dagger}$ Hiroko Wada, ${ }^{\dagger}$ Mao Ogino, ${ }^{\dagger}$ Takahiro Kikuchi, ${ }^{\dagger}$ Isao Kadota, ${ }^{,}{ }^{\dagger}$ and Daisuke Uemura ${ }^{\ddagger}$
${ }^{\dagger}$ Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
${ }^{\dagger}$ Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka 259-1293, Japan

Corresponding Author's E-mail Address

takamura@cc.okayama-u.ac.jp; kadota-i@cc.okayama-u.ac.jp

Table of Contents/Abstract Graphic

Abstract

Four possible diastereomers of the $\mathrm{C} 1-\mathrm{C} 13$ fragment of symbiodinolide, which were proposed by the stereostructural analysis of the degraded product, were synthesized in a stereodivergent and stereoselective manner. The key transformations were aldol reaction of
methyl acetoacetate with the aldehyde, diastereoselective reduction of the resulting β-hydroxy ketone, and the stereoinversion at the C 6 position. Comparison of the ${ }^{1} \mathrm{H}$ NMR data between the four synthetic products and the degraded product revealed the relative stereostructure of the C1-C13 fragment of symbiodinolide.

Introduction

Integrated use of spectroscopic method and chemical synthesis is well recognized as a reliable approach to the structural elucidation of natural products. ${ }^{1}$ In particular, if the target molecule has a huge molecular size or a number of functional groups, the chemical synthesis is often required for the unambiguous configurational assignment. ${ }^{2}$

Symbiodinolide (1, Figure 1), a 62-membered polyol macrolide marine natural product, was isolated from the 80% aqueous ethanol extract of the cultured dinoflagellate Symbiodinium sp. by one of the authors (D.U.). ${ }^{3}$ This natural product exhibits voltage-dependent N -type Ca^{2+} channel-opening activity at 7 nM and COX -1 inhibition effect at $2 \mu \mathrm{M}$ (65% inhibition). The planar structure of symbiodinolide (1) was assigned by the detailed 2D NMR spectroscopic techniques. However, the stereostructure of $\mathbf{1}$ has not been elucidated yet because of its complicated molecular structure characterized by 61 stereocenters and molecular weight of 2860. Therefore, we are now examining the degradation of natural symbiodinolide (1) ${ }^{3,4}$ and chemical synthesis of each fragment including the stereoisomers ${ }^{5}$ toward the complete stereochemical establishment of $\mathbf{1}$. Previously, as a degradation of symbiodinolide (1), we
carried out the methanolysis and subsequent oxidative cleavage with Grubbs II catalyst/ NaClO to yield the $\mathrm{C} 1-\mathrm{C} 13$ fragment 2 (Scheme 1). ${ }^{4 \mathrm{a}, 4 \mathrm{c}}$ Herein, as a part of our efforts toward the complete configurational determination of symbiodinolide (1), we describe the stereostructural analysis of the degraded product 2, and stereodivergent and stereoselective synthesis of all four possible diastereomers of the C1-C13 fragment 2, ${ }^{6}$ which has established the relative stereostructure of this fragment.

Figure 1. Structure of symbiodinolide (1).

Scheme 1. Degradation of Symbiodinolide (1)

Results and Discussion

Stereochemical Analysis of the Degraded Product 2. Prior to starting the synthesis of the C1-C13 fragment, we first analyzed the stereostructure of the degraded product 2 to reduce the number of the possible diastereomer of this fragment. As shown in Figure 2a, the chemical shifts of the $\mathrm{H}-5$ and $\mathrm{H}-7$ in the ${ }^{1} \mathrm{H}$ NMR spectrum were the same value (3.97 ppm in $\mathrm{D}_{2} \mathrm{O}$), in addition, the two coupling constants were also same (${ }^{3} J_{5,6}$ and $\left.{ }^{3} J_{6,7}=4.5 \mathrm{~Hz}\right)$. Comparison of these results with universal NMR databases for 1,2,3-triols reported by Kishi and co-workers ${ }^{7}$ indicates that the relative stereochemical relationships at the C 5 and C 7 positions to the C 6 position are same, that is, syn/syn or anti/anti. Thus, the possible diastereomers of the C1-C13 fragment were narrowed down from the eight potential diastereomers and found to be four, which are described as $\mathbf{2 a}-\mathbf{2 d}$ in Figure 2b. We next examined the synthesis of these all four possible diastereomers 2a-2d in the unified strategy. ${ }^{8}$
(a)

$\mathrm{H}-5$ and $\mathrm{H}-7: 3.97 \mathrm{ppm}$
${ }^{3} J_{5,6}$ and ${ }^{3} J_{6,7}=4.5 \mathrm{~Hz}$
(b)

Figure 2. (a) ${ }^{1} \mathrm{H}$ NMR analysis of the degraded product 2. (b) Four possible diastereomers of the C1-C13 fragment.

Stereodivergent Synthetic Plan of 2a-2b. The unified and stereodivergent synthetic plan of 2a-2d is depicted in Scheme 2. Aldol reaction of methyl acetoacetate (3) with aldehyde $\mathbf{4}$ would provide the coupling product 5 with the desired oxymethine stereochemistry at the C5 position. The substrate-controlled diastereoselective reduction of β-hydroxy ketone $\mathbf{5}$ by utilizing the resulting C5 stereochemistry with the appropriate reducing reagent could afford syn-diol $\mathbf{6}$ and anti-diol 7, respectively. The syn-diol $\mathbf{6}$ could be transformed to the tetraol 2a through the deprotection and oxidation of the allylic alcohol. The tetraol $\mathbf{2 b}$ would be also synthesized via the stereoinversion at the C6 position from 6. In the similar way, the tetraols 2c and 2d could be stereoselectively supplied, respectively, by using the anti-diol $\mathbf{7}$ as the
common synthetic intermediate.

Scheme 2. Stereodivergent Synthetic Plan of 2a-2d

Stereoselective Synthesis of 2a. We investigated the stereoselective synthesis of the first target molecule 2a. Parikh-Doering oxidation ${ }^{9}$ of the known alcohol 8, which was prepared from 2-deoxy-D-ribose in four steps, ${ }^{10}$ followed by two-carbon elongation with $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ and DIBAL-H reduction provided allylic alcohol 9 in 77% yield in three steps (Scheme 3). The alcohol 9 was protected as the TBDPS ether and the regioselective reductive cleavage of the p-methoxybenzylidene acetal moiety with DIBAL-H afforded primary alcohol $\mathbf{1 0}$. The alcohol $\mathbf{1 0}$ was oxidized to the corresponding aldehyde with $\mathrm{SO}_{3} \cdot \mathrm{pry} / \mathrm{Et}_{3} \mathrm{~N} / \mathrm{DMSO} .{ }^{9}$ Stereoselective aldol addition of methyl acetoacetate (3) to the resulting α, β-bis-alkoxy aldehyde by using NaH and n - BuLi as bases produced β-hydroxy
ketone 11 possessing the desired C5 configuration in 94% yield as the inseparable 6:1 diastereomeric mixture. ${ }^{11,12}$ We next tried the derivatization of $\mathbf{1 1}$ for the stereochemical confirmation at the C5 position. Thus, removal of the TBDPS protective group with HF•pyr and subsequent oxidation of the allylic alcohol with $\mathrm{TEMPO} / \mathrm{PhI}(\mathrm{OAc}){ }_{2}{ }^{13}$ gave unsaturated aldehyde 12. Treatment of the alcohol $\mathbf{1 2}$ with DDQ provided p-methoxybenzylidene acetal 13. ${ }^{14}$ The observed NOEs of $\mathrm{Ha} / \mathrm{Hb}, \mathrm{Ha} / \mathrm{Hc}$, and $\mathrm{Hb} / \mathrm{Hc}$ in $\mathbf{1 3}$ as shown by arrows indicated that they were in syn relationships. Thereby, the absolute stereochemistry at the C5 position of 11 was unambiguously confirmed. Next, we introduced the C3 oxymethine stereochemistry. Thus, diastereoselective reduction of $\mathbf{1 1}$ was carried out with $\mathrm{Et}_{2} \mathrm{BOMe} / \mathrm{NaBH}_{4}{ }^{15}$ to afford syn-diol 14 in 98% yield as a single product (Scheme 4). For the stereochemical confirmation at the C 3 position, the diol $\mathbf{1 4}$ was protected with $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OMe})_{2} / \mathrm{CSA}$ to give p-methoxybenzylidene acetal 15. The NOE correlations of $\mathrm{Ha} / \mathrm{Hb}, \mathrm{Ha} / \mathrm{Hc}$, and $\mathrm{Hb} / \mathrm{Hc}$ in 15 suggested that all of them were oriented in axial positions, respectively. Thus, the absolute configuration at the C 3 position of $\mathbf{1 4}$ was elucidated.

Scheme 3. Synthesis of 11 and Its Stereochemical Confirmation at the C5 Position

Scheme 4. Synthesis of 14 and Its Stereochemical Confirmation at the C3 Position

11

14

Next, we examined the transformation of the diol $\mathbf{1 4}$ to the tetraol 2a. Protection of $\mathbf{1 4}$ with
$\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2} / p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ gave acetonide $\mathbf{1 6}$ (Scheme 5). The TBDPS moiety of $\mathbf{1 6}$ was
selectively removed with $\mathrm{TBAF} / \mathrm{AcOH}^{16}$ to provide allylic alcohol 17 in 68% yield. TEMPO oxidation ${ }^{13}$ of $\mathbf{1 7}$ and removal of the PMB group with DDQ afforded unsaturated aldehyde $\mathbf{1 8}$ in 94% yield in two steps. The acetonide moiety of $\mathbf{1 8}$ was removed with $\mathrm{TiCl}_{4}{ }^{17}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-30^{\circ} \mathrm{C}$ to afford triol 19 in 98% yield. Finally, treatment of the TBS ether 19 with HF•pyr at $0^{\circ} \mathrm{C}$ to room temperature produced the tetraol 2a. Although we could obtain the first target molecule 2a, the conversion of $\mathbf{1 9}$ to 2 a was quite slow and the starting material $\mathbf{1 9}$ was recovered in 52% yield. When the reaction time was prolonged, we observed the formation of several byproducts, furthermore, this transformation was irreproducible. Since this deprotection would be problematic in the subsequent synthesis of $\mathbf{2 b} \mathbf{- 2 d}$, a change from the TBS protective group to a less-hindered and more easily removed group in the final step was needed.

Scheme 5. Synthesis of 2a

14

16

17

19

Removal of the TBS moiety of $\mathbf{1 7}$ was carried out with TBAF/AcOH in MeCN at $60^{\circ} \mathrm{C}$ to give diol $\mathbf{2 0}$ in 86% yield (Scheme 6). ${ }^{18}$ Treatment of $\mathbf{2 0}$ with TESOTf/2,6-lutidine followed by selective removal of the primary TES moiety provided secondary TES ether 21. TEMPO oxidation ${ }^{13}$ of the allylic alcohol 21 and subsequent removal of the PMB group afforded unsaturated aldehyde $\mathbf{2 2}$ in $\mathbf{7 6 \%}$ yield in two steps. Finally, when $\mathbf{2 2}$ was treated with $\mathrm{TiCl}_{4}{ }^{17}$
at $-30^{\circ} \mathrm{C}$ to room temperature, the acetonide deprotection and subsequent removal of the TES moiety proceeded in one-pot to produce the tetraol 2a in 74% yield.

Scheme 6. Improved Synthesis of 2a

22

Stereoselective Synthesis of $\mathbf{2 b}$. We next examined the stereoselective synthesis of the second target molecule $\mathbf{2 b}$, which is the C6-epimer of $\mathbf{2 a}$. We envisioned the stereoinversion at the C6 position by the oxidation-reduction process. Thus, selective protection of the primary hydroxy group of the diol $\mathbf{2 0}$ with $\mathrm{TESCl} /$ imidazole yielded the secondary alcohol,
which was subjected to the TPAP oxidation ${ }^{19}$ to afford ketone 23 (Scheme 7). Diastereoselective reduction of $\mathbf{2 3}$ with NaBH_{4} proceeded successfully to provide the desired alcohol $\mathbf{2 4}$ in $\mathbf{9 8 \%}$ yield as the sole diastereomer. This stereochemical outcome is in line with a Felkin-Anh model, which is doubly effected by the C5 and C7 stereogenic centers. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 4}$ was clearly different from that of the secondary alcohol obtained in the first step from 20, which resulted in the configurational confirmation at the C6 stereogenic center of $\mathbf{2 4}$. TES protection of the resulting secondary hydroxy moiety of $\mathbf{2 4}$ followed by selective removal of the primary TES group yielded alcohol 25 . Oxidation of $\mathbf{2 5}$ with TEMPO/PhI(OAc) $2{ }^{13}$ and subsequent removal of the PMB group gave unsaturated aldehyde $\mathbf{2 6}$ in 82% yield in two steps. Stepwise deprotection of 26, that is, removal of the acetonide moiety by $\mathrm{TiCl}_{4}{ }^{17}$ and the TES group by HF•pyr, furnished the second target molecule $\mathbf{2 b}$.

Scheme 7. Synthesis of 2b

20

24

1) TESOTf, 2,6 -lutidine $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt
2) PPTS
$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 0^{\circ} \mathrm{C}$ to rt
quant (2 steps)

25
3) $\mathrm{TEMPO}, \mathrm{Phl}(\mathrm{OAc})_{2}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt
4) $D D Q$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{pH} 7$ buffer $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 82 \%$ (2 steps)

26

Stereoselective Synthesis of 2c and 2d. Having completed the stereoselective and stereodivergent synthesis of the first and second target molecules $\mathbf{2 a}$ and $\mathbf{2 b}$ bearing the syn relationships at the C3 and C5 positions, we next commenced the synthesis of the third and fourth target molecules 2c and 2d with the C3/C5 anti correlations. The stereoselective
synthesis of $\mathbf{2 c}$ is illustrated in Scheme 8. Treatment of the β-hydroxy ketone $\mathbf{1 1}$ with $\mathrm{NaBH}(\mathrm{OAc})_{3}{ }^{20}$ furnished the desired anti-diol 27 in 95% yield as a single diastereomer, as judged by its ${ }^{1} \mathrm{H}$ NMR spectrum, which was clearly different from that of the syn-diol $\mathbf{1 4}$. Further transformation of $\mathbf{2 7}$ toward $\mathbf{2 c}$ was similar to that used in the synthesis of $\mathbf{2 a}$. Protection of the resulting diol moiety of $\mathbf{2 7}$ and desilylation afforded diol $\mathbf{2 8}$. The diol $\mathbf{2 8}$ was transformed to unsaturated aldehyde 29 by the following four-step sequence: (1) bis-silylation, (2) selective desilylation of the primary TES moiety, (3) TEMPO oxidation ${ }^{13}$ of the allylic alcohol, and (4) removal of the PMB group. Simultaneous removal of the acetonide and TES moieties was performed with $\mathrm{TiCl}_{4}{ }^{17}$ to provide the third target molecule $\mathbf{2 c}$ in 44% yield.

Scheme 8. Synthesis of 2c

11
$\mathrm{NaBH}(\mathrm{OAc})_{3}$
CN/AcOH, $-20^{\circ} \mathrm{C} \downarrow 99 \%$

27

2) TBAF, AcOH MeCN, reflux 66\%

28

The stereocontrolled synthesis of $\mathbf{2 d}$, whose synthetic route was analogous to that of $\mathbf{2 b}$, is shown in Scheme 9. The alcohol 28, which was the key synthetic intermediate toward $\mathbf{2 c}$, was converted to ketone $\mathbf{3 0}$ through the selective silylation of the primary alcohol and TPAP oxidation ${ }^{19}$ of the secondary alcohol. The ketone $\mathbf{3 0}$ was reduced with NaBH_{4} to give alcohol 31 as the sole diastereomer. The resulting stereochemistry at the C6 position of $\mathbf{3 1}$ was confirmed by comparing the ${ }^{1} \mathrm{H}$ NMR spectra between $\mathbf{3 1}$ and the secondary alcohol synthesized in the first transformation from 28. Acetonide 32, which was synthesized from the
alcohol 31 in 54% overall yield in four steps, was deprotected with $\mathrm{TiCl}_{4}{ }^{17}$ to provide the fourth target molecule 2d in 47\% yield.

Scheme 9. Synthesis of 2d

30
 quant

31

1) TESOTf, 2,6-lutidine $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to r
2) PPTS, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ $0^{\circ} \mathrm{C}$ to rt 72\% (2 steps)

32

Relative Stereostructure of the C1-C13 Fragment. With all four possible diastereomers
$\mathbf{2 a}-\mathbf{2 d}$ in hand, we next compared these ${ }^{1} \mathrm{H}$ NMR data with those of the degraded product $\mathbf{2}$.

As described in Table 1, the ${ }^{1} \mathrm{H}$ NMR chemical shifts of the synthetic $\mathbf{2 b}$ were found to be in
full agreement with those of the degraded product $2 .{ }^{21}$ On the other hand, the ${ }^{1} \mathrm{H}$ NMR chemical shifts of the synthetic $\mathbf{2 a}, \mathbf{2 c}$, and $\mathbf{2 d}$ were clearly different from those of the degraded product 2, respectively. Especially, the chemical shifts of two geminal protons at the C4 position of $\mathbf{2 a}, \mathbf{2 c}$, and $\mathbf{2 d}$ were different to each other, respectively, whereas the chemical shifts of these protons of $\mathbf{2}$ and $\mathbf{2 b}$ were found to be same. Therefore, the relative stereostructure of the C1-C13 fragment of symbiodinolide (1) was elucidated to be that described in 2b.

Table 1. ${ }^{1}$ H NMR Chemical Shifts of the Degraded Product 2 and the Synthetic Products

$2 \mathrm{a}-2 \mathrm{~d}^{a}$

position	$\mathbf{2}^{b}$	$\mathbf{2 a}^{c}$	$\mathbf{2 b}^{c}$	$\mathbf{2 c}^{c}$	$\mathbf{2 d}^{c}$
$1-\mathrm{CO}_{2} \mathrm{Me}$	3.67	3.67	3.67	3.67	3.67
2	2.56	2.56	2.56	2.49	2.48
	2.44	2.44	2.44	2.49	2.48
3	4.21	4.31	4.22	4.31	4.27
4	1.75	1.85	1.75	1.78	1.70
5	1.75	1.70	1.75	1.60	1.59
7	3.88	3.84	3.89	3.91	3.93
7	3.33	3.39	3.32	3.39	3.23
		3.72	3.80	3.73	3.82

8	2.52	2.61	2.52	2.62	2.52
	2.48	2.40	2.47	2.42	2.48
9	6.47	6.48	6.47	6.50	6.49
10	6.47	6.48	6.47	6.50	6.49
11	7.29	7.29	7.29	7.30	7.29
12	6.09	6.08	6.09	6.08	6.09
$13-\mathrm{CHO}$	9.49	9.49	9.49	9.49	9.49

${ }^{a}$ Chemical shifts are reported in ppm with reference to the solvent signal $\left(\mathrm{CD}_{3} \mathrm{OD}, 3.30 \mathrm{ppm}\right)$.
${ }^{b}$ Recorded at 800 MHz . ${ }^{c}$ Recorded at 600 MHz .

Conclusion

First, we have analyzed the ${ }^{1} \mathrm{H}$ NMR chemical shifts and coupling constants of the degraded product 2 obtained from natural symbiodinolide (1) and proposed its four possible diastereomers 2a-2d by comparing with the universal NMR databases reported by Kishi's research group. Next, we have examined the stereodivergent synthesis of $\mathbf{2 a} \mathbf{- 2 d}$ in the unified manner. Thus, the β-hydroxy ketone 11, which would be the key common synthetic intermediate of $\mathbf{2 a} \mathbf{- 2 d}$, was synthesized by aldol reaction between methyl acetoacetate (3) and the aldehyde derived from 10. Diastereoselective reduction of $\mathbf{1 1}$ provided the syn-diol $\mathbf{1 4}$ (by $\mathrm{Et}_{2} \mathrm{BOMe} / \mathrm{NaBH}_{4}$) and the anti-diol 27 (by $\mathrm{NaBH}(\mathrm{OAc})_{3}$), respectively. Deprotection and oxidation of the allylic alcohol moiety of $\mathbf{1 4}$ produced the first target molecule 2a. The second
target molecule 2b was synthesized via the stereoinversion at the C 6 position by diastereoselective reduction of the ketone 23. In the similar synthetic route, the third and fourth target molecules 2c and 2d were yielded from the anti-diol 27, respectively and stereoselectively. Comparison of the ${ }^{1} \mathrm{H}$ NMR data of the synthetic 2a-2d with those of the degraded product 2 determined the relative stereochemistry of the $\mathrm{C} 1-\mathrm{C} 13$ fragment of symbiodinolide (1) to be depicted in $\mathbf{2 b}$.

Experimental Section

Allylic Alcohol 9. To a solution of allylic alcohol 8 ($5.04 \mathrm{~g}, 12.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(51 \mathrm{~mL})$ and DMSO (13 mL) were added $\mathrm{Et}_{3} \mathrm{~N}(7.8 \mathrm{~mL}, 56.3 \mathrm{mmol})$ and $\mathrm{SO}_{3} \cdot$ pyr $(4.07 \mathrm{~g}, 25.6 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 2 h . The mixture was diluted with EtOAc, washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$, and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=10: 1$) gave the corresponding α, β-unsaturated aldehyde (4.53 g), which was used for the next reaction without further purification.

To a suspension of $\mathrm{NaH}(60 \%$ dispersion in oil, $1.11 \mathrm{~g}, 27.8 \mathrm{mmol}$, washed with hexane in advance) in benzene (15 mL) was added $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}(6.0 \mathrm{~mL}, 30.2 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature for 15 min , the aldehyde obtained above $(4.53 \mathrm{~g})$ in benzene $(10 \mathrm{~mL}+6.0 \mathrm{~mL}+4.0 \mathrm{~mL})$ was added at room temperature. After the mixture was stirred at room temperature for 2 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ at $0{ }^{\circ} \mathrm{C}$.

The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=20: 1$) gave the corresponding α, β-unsaturated ester (4.85 g), which was used for the next reaction without further purification.

To a solution of the ester obtained above $(4.85 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added DIBAL-H (1.04 M solution in hexane, $20 \mathrm{~mL}, 20.8 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min , the reaction was quenched with MeOH . The mixture was filtered through a Celite pad and washed with EtOAc. Concentration and column chromatography (hexane/EtOAc $=4: 1)$ gave allylic alcohol $9\left(4.11 \mathrm{~g}, 77 \%\right.$ in three steps) as a colorless oil: R_{f} $=0.19($ hexane $/ \mathrm{EtOAc}=4: 1) ;[\alpha]_{\mathrm{D}}{ }^{25}-60.6\left(c 0.92, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $3427,2929,2856,1615$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 6.28-6.11 (m, 2 H), $5.85(\mathrm{dt}, J=15.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{dt}, J=15.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1$ H), 4.19-4.16(m, 3 H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.57(\mathrm{~m}, 3 \mathrm{H}), 2.64(\mathrm{dd}, J=14.4,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.36(\mathrm{dd}, J=14.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.8,131.7,130.5,130.4,130.0,127.6,127.3,113.5,100.7$, 81.9, 71.7, 66.2, 63.5, 55.3, 34.8, 25.8, 18.0, $-4.0,-4.6$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 443.2230$, found 443.2236 .

Alcohol 10. To a solution of alcohol $9(234 \mathrm{mg}, 0.558 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ were added DMAP ($107 \mathrm{mg}, 0.873 \mathrm{mmol}$), imidazole ($59.6 \mathrm{mg}, 0.873 \mathrm{mmol}$), and TBDPSCl (0.17
$\mathrm{mL}, 0.670 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature for 20 min , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with EtOAc , washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=50: 1,10: 1$) gave the corresponding TBDPS ether (400 mg , quant) as a colorless oil: $R_{f}=0.76$ (hexane/EtOAc $=2: 1$); $[\alpha]_{\mathrm{D}}{ }^{24}-33.7\left(c 0.95, \mathrm{CHCl}_{3}\right)$; IR (neat) 2930, 2844, $1615 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72-7.69$ (m, 4 H), 7.45-7.37 (m, 8 H), $6.91(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.32-6.14(\mathrm{~m}, 2 \mathrm{H}), 5.87(\mathrm{dt}, J=14.9,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.71(\mathrm{dt}, J=14.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{dt}, J=8.6,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.56(\mathrm{~m}, 3 \mathrm{H}), 2.67(\mathrm{dd}, J=14.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.39(\mathrm{~m}, 1$ H), $1.10(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.8,135.5,135.5,135.4,133.7,132.1,130.4,129.9,129.5,129.3,127.6,127.6,127.3$, $113.5,100.7,82.0,71.7,66.2,64.2,55.3,34.9,26.9,25.8,19.3,18.0,-4.0,-4.6$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{39} \mathrm{H}_{54} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 681.3408$, found 681.3398.

To a solution of the corresponding p-methoxybenzylidene acetal ($610 \mathrm{mg}, 0.926 \mathrm{mmol}$) in toluene (19 mL) was added DIBAL-H (1.04 M solution in hexane, $5.4 \mathrm{~mL}, 5.55 \mathrm{mmol}$) at $-50{ }^{\circ} \mathrm{C}$. After the mixture was gradually warmed up to $-10{ }^{\circ} \mathrm{C}$ for 2 h , the reaction was quenched with MeOH . The mixture was filtered through a Celite pad and washed with EtOAc. Concentration and column chromatography (hexane/EtOAc $=10: 1,7: 1,4: 1$) gave alcohol 10 $(447 \mathrm{mg}, 73 \%)$ as a colorless oil and the acetal $(70.0 \mathrm{mg}, 12 \%$ recovery $)$. Alcohol 10: $R_{f}=$
0.73 (hexane/EtOAc $=2: 1) ;[\alpha]_{\mathrm{D}}{ }^{23}-14.1\left(c 1.00, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $3476,2930,2864 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.26(\mathrm{~m}, 8 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2$ H), $6.27(\mathrm{dd}, J=15.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=15.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.73-5.68(\mathrm{~m}, 2 \mathrm{H})$, $4.55(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.55(\mathrm{~m}, 4 \mathrm{H}), 2.52-2.46(\mathrm{~m}, 1 \mathrm{H})$, 2.39-2.33(m, 1 H$), 2.21$ (brs, 1 H$), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,135.4,133.7,132.3,130.4,130.3,129.9,129.7$, 129.5, 127.6, 113.8, 80.4, 74.0, 72.5, 64.2, 55.3, 34.5, 26.9, 25.9, 19.3, 18.1, -4.3, -4.5 ; HRMS (ESI-TOF) calcd for $\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 683.3564$, found 683.3555.
$\boldsymbol{\beta}$-Hydroxy Ketone 11. To a solution of alcohol $\mathbf{1 0}$ ($79.3 \mathrm{mg}, 0.148 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0$ $\mathrm{mL})$ and DMSO $(0.3 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(0.10 \mathrm{~mL}, 0.740 \mathrm{mmol})$ and $\mathrm{SO}_{3} \cdot \mathrm{pyr}(94.2 \mathrm{mg}$, 0.592 mmol) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 2 h . The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=20: 1$) gave the corresponding aldehyde (75.4 $\mathrm{mg}, 95 \%)$ as a colorless oil: $R_{f}=0.70$ (hexane/EtOAc $\left.=2: 1\right)[\alpha]_{\mathrm{D}}{ }^{21}-14.1\left(c 1.06, \mathrm{CHCl}_{3}\right)$; IR (neat) 2931, 2858, $1739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.68(\mathrm{~m}, 4$ H), 7.44-7.36(m, 6 H), $7.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.27-6.10(\mathrm{~m}, 2$ H), $5.70(\mathrm{dt}, J=14.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dt}, J=14.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.49(\mathrm{~m}, 2 \mathrm{H}), 4.25$ (d, $J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.14-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.69(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
203.2, 159.1, 135.4, 133.6, 133.2, 131.0, 130.0, 129.5, 129.4, 128.6, 127.6, 113.7, 80.8, 79.0, 71.9, 64.2, 55.3, 33.9, 26.9, 25.8, 19.3, 18.3, $-4.6,-4.7$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{39} \mathrm{H}_{54} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$681.3408, found 681.3410.

To a suspension of NaH (60% dispersion in oil, $19.7 \mathrm{mg}, 0.493 \mu \mathrm{~mol}$, washed with hexane in advance) in THF (1.0 mL) was added methyl acetoacetate (3) (29.5 $\mu \mathrm{L}, 0.247 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred at $0^{\circ} \mathrm{C}$ for $20 \mathrm{~min}, n-\mathrm{BuLi}(1.57 \mathrm{M}$ solution in hexane, 0.19 mL , 0.301 mmol) was added at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min , the corresponding aldehyde ($90.3 \mathrm{mg}, 0.137 \mathrm{mmol}$) in THF ($0.3 \mathrm{~mL}+0.2 \mathrm{~mL}$) was added at $-78{ }^{\circ} \mathrm{C}$. After the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 min , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with EtOAc , washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=$ 6:1) gave β-hydroxy ketone $\mathbf{1 1}(100 \mathrm{mg}, 94 \%, \mathrm{dr}=6: 1)$ as a colorless oil: $R_{f}=0.21$ (hexane/EtOAc $=4: 1) ;[\alpha]_{\mathrm{D}}{ }^{22}+2.2\left(c 1.00, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $3517,2930,2856,1748,1715$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.80-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.22(\mathrm{~m}, 8 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.42(\mathrm{dd}, J=15.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=15.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dt}, J=$ $15.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dt}, J=15.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.32-4.28(\mathrm{~m}, 1$ H), $4.24(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.26$ (s, 3 H), $3.03(\mathrm{~s}, 2 \mathrm{H}), 2.80-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.61(\mathrm{~m}, 1 \mathrm{H})$, 2.50-2.45 (m, 2 H), 1.19 (s, 9 H), 1.01 (s, 9 H), 0.19 (s, 3 H), 0.18 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 203.3,159.8,135.9,134.2,132.6,130.9,130.8,130.5,129.9,114.1,79.9,77.1$, $72.1,69.0,64.7,54.9,51.8,49.8,45.6,34.0,27.2,26.5,19.6,18.7,-3.9,-4.0$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{44} \mathrm{H}_{62} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 797.3881$, found 797.3875.

Unsaturated Aldehyde 12. To a solution of TBDPS ether $11(27.9 \mathrm{mg}, 36.0 \mu \mathrm{~mol})$ in THF (3.6 mL) was added $\mathrm{HF} \cdot$ pyr $(100 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . After the mixture was stirred at room temperature for $6 \mathrm{~h}, \mathrm{HF} \cdot \mathrm{pyr}(100 \mu \mathrm{~L})$ was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . After the mixture was stirred at room temperature for 2 h , the reaction was quenched with saturated aqueous NaHCO_{3}. The mixture was diluted with EtOAc , washed with saturated aqueous $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=10: 1,2: 1$) gave the corresponding alcohol (15.4 mg), which was used for the next reaction without further purification.

To a solution of the alcohol obtained above (15.4 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ were added $\mathrm{PhI}(\mathrm{OAc})_{2}(25.0 \mathrm{mg}, 77.8 \mu \mathrm{~mol})$ and TEMPO $(0.48 \mathrm{mg}, 3.10 \mu \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$. After the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 6 h , the reaction was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was diluted with EtOAc , washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=4: 1$) gave unsaturated aldehyde 12 ($11.6 \mathrm{mg}, 60 \%$ in two steps) as a colorless oil: $R_{f}=0.43$ (hexane/EtOAc $=1: 1$); $[\alpha]_{\mathrm{D}}{ }^{25}-1.8$ (c $0.10, \mathrm{CHCl}_{3}$); IR (neat) $3483,2927,2855,1747,1682,1638 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 9.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{dd}, J=15.2,10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.38-6.32(\mathrm{~m}, 1 \mathrm{H}), 6.28-6.20(\mathrm{~m}, 1 \mathrm{H}), 6.12-6.04(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~d}$, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $3.44(\mathrm{~s}, 2 \mathrm{H}), 2.91-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, 0.10 (s, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.5$, 193.6, 167.1, 159.3, 152.1, 143.3, 130.5, $130.3,129.6,113.8,78.9,76.0,71.9,68.6,55.3,52.4,49.7,45.8,34.0,26.1,18.3,-4.0,-4.4$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 557.2546$, found 557.2552 .
p-Methoxybenzylidene Acetal 13. To a suspension of alcohol 12 ($5.9 \mathrm{mg}, 11.0 \mu \mathrm{~mol}$) and MS4 $\AA(10.0 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added $\mathrm{DDQ}(3.7 \mathrm{mg}, 16.5 \mu \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$. After the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , the mixture was filtered through a Celite pad and washed with EtOAc. The mixture was washed with saturated aqueous NaHCO_{3} and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=5: 1$) gave p-methoxybenzylidene acetal $13(2.4 \mathrm{mg}, 41 \%)$ as a colorless oil: $R_{f}=0.47($ hexane $/ \mathrm{EtOAc}=$ 2:1); $[\alpha]_{\mathrm{D}}{ }^{25}-27.6\left(c 0.09, \mathrm{CHCl}_{3}\right)$; IR (neat) $2925,2854,1732,1682,1642 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 9.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2$ H), $6.44-6.37(\mathrm{~m}, 1 \mathrm{H}), 6.05-6.01(\mathrm{~m}, 2 \mathrm{H}), 5.92(\mathrm{dd}, J=15.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H})$, 3.86-3.80 (m, 1 H), 3.50-3.45 (m, 2 H), 3.34-3.20 (m, 4 H), 3.31 (s, 3 H), 3.18 (s, 3 H$)$, $2.61-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 192.2,164.4,160.8,159.9,150.3,140.1,131.4,130.3,130.0,114.0,109.0$,
$100.9,81.0,79.1,71.6,54.9,52.1,35.8,31.7,26.1,26.0,18.4,-3.2,-3.4$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 555.2390$, found 555.2383.

Diol 14. To a solution of β-hydroxy ketone $\mathbf{1 1}(311 \mathrm{mg}, 0.401 \mathrm{mmol})$ in THF (8.6 mL) and $\mathrm{MeOH}(2.1 \mathrm{~mL})$ was added $\mathrm{Et}_{2} \mathrm{BOMe}(0.48 \mathrm{~mL}, 0.481 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for $15 \mathrm{~min}, \mathrm{NaBH}_{4}(18.2 \mathrm{mg}, 0.481 \mathrm{mmol})$ was added. After the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , the reaction was quenched with AcOH . The mixture was diluted with EtOAc , washed with saturated aqueous NaHCO_{3} and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Addition of $\mathrm{MeOH}(10 \mathrm{~mL})$ to the mixture and concentration (five times repetition), and column chromatography (hexane/EtOAc $=5: 1)$ gave diol $14(304 \mathrm{mg}, 98 \%)$ as a colorless oil: $R_{f}=0.45$ (hexane/EtOAc $=2: 1$); $[\alpha]_{\mathrm{D}}{ }^{25}-2.5\left(c 1.00, \mathrm{CHCl}_{3}\right) ;$ IR (neat) 3464, 2930, 2857, $1739,1613 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.80-7.79(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 8 \mathrm{H}), 6.81$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{dd}, J=15.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=15.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.94$ $(\mathrm{dt}, J=15.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dt}, J=15.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{~d}, J$ $=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.07-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H})$, $3.25(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=16.3,8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.12(\mathrm{dd}, J=16.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.26(\mathrm{~s}, 3 \mathrm{H})$, $0.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 172.6,159.7,135.9,134.2,132.9,132.4,131.4$, $131.1,130.7,130.5,130.2,129.9,114.0,79.9,77.7,73.6,72.1,69.6,64.7,54.8,51.2,41.8$, 38.6, 33.9, 27.2, 26.6, 19.6, 18.8, -3.7, -3.9; HRMS (ESI-TOF) calcd for $\mathrm{C}_{44} \mathrm{H}_{64} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}$ [M
$+\mathrm{Na}]^{+} 799.4037$, found 799.4037.
p-Methoxybenzylidene Acetal 15. To a suspension of diol 14 ($5.3 \mathrm{mg}, 6.82 \mu \mathrm{~mol}$) and MS4 $\AA(5.0 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ were added $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OMe})_{2}(1.7 \mu \mathrm{~L}, 10.2 \mu \mathrm{~mol})$ and CSA $(1.0 \mathrm{mg}, 4.30 \mu \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 4 h . To the mixture were added $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OMe})_{2}(1.7 \mu \mathrm{~L}, 10.2 \mu \mathrm{~mol})$ and CSA $(1.0 \mathrm{mg}, 4.30$ $\mu \mathrm{mol})$ at $0^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature for further 12 h , the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$. The mixture was filtered through a Celite pad and washed with EtOAc. Concentration and column chromatography (hexane/EtOAc $=10: 1$) gave p-methoxybenzylidene acetal $15(4.0 \mathrm{mg}, 66 \%)$ as a colorless oil: $R_{f}=0.44($ hexane $/ \mathrm{EtOAc}=$ 4:1); $[\alpha]_{\mathrm{D}}{ }^{25}-16.3\left(c 0.09, \mathrm{CHCl}_{3}\right)$; IR (neat) 2928, 2855, 1741, $1614 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta 7.85-7.83(\mathrm{~m}, 5 \mathrm{H}), 7.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.04-7.01$ $(\mathrm{m}, 5 \mathrm{H}), 6.55(\mathrm{dd}, J=15.1,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=15.1,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dt}, J=$ $15.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dt}, J=15.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.54-4.47(\mathrm{~m}$, $1 \mathrm{H}), 4.36(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.29-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.84(\mathrm{~m}, 1$ H), $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{dd}, J=15.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.64(\mathrm{~m}, 2$ H), 1.93-1.80(m, 2H), 1.25-1.23(m, 1 H$), 1.13(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.24(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) δ 171.1, 160.3, 159.7, 135.9, 135.0, 134.2, 132.4, 131.9, 131.5, $131.2,130.8,130.7,130.2,128.3,128.2,123.0,114.2,113.9,101.2,79.1,77.5,76.5,73.8$, $71.7,64.8,55.3,51.6,41.5,33.5,32.5,27.1,26.5,19.6,18.8,-3.7,-3.9$; HRMS (ESI-TOF)
calcd for $\mathrm{C}_{52} \mathrm{H}_{70} \mathrm{O}_{9} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 917.4456$, found 917.4457.

Acetonide 16. To a solution of diol $14(202 \mathrm{mg}, 0.260 \mathrm{mmol})$ in THF (2.6 mL) were added $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}(0.32 \mathrm{~mL}, 2.26 \mathrm{mmol})$ and $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(4.9 \mathrm{mg}, 26.0 \mu \mathrm{~mol})$ at room temperature. After the mixture was stirred at room temperature for 30 min , the reaction was quenched with saturated aqueous NaHCO_{3}. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=7: 1$) gave acetonide $16\left(212 \mathrm{mg}\right.$, quant) as a colorless oil: $R_{f}=0.62$ (hexane/EtOAc $=2: 1$); $[\alpha]_{\mathrm{D}}{ }^{22}-8.2\left(c 1.25, \mathrm{CHCl}_{3}\right)$; IR (neat) 2929, 2858, $1741 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.25(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{dd}, J=15.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=15.1$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.76-5.65(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.25-4.24(\mathrm{~m}, 3 \mathrm{H}), 3.97(\mathrm{ddd}, J=7.3,4.9$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.79 (s, 3 H), 3.70-3.68 (m, 1 H), 3.68 (s, 3 H), 3.52-3.48 (m, 1 H), 2.54 (dd, J $=15.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.33(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.08$ (s, 9 H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.2, $159.1,135.5,133.7,131.7,130.7,130.1,130.0,129.6,129.5,129.3,127.6,113.6,98.7,78.8$, $76.4,71.6,69.3,66.0,64.3,55.3,51.6,41.6,33.5,31.7,29.9,26.9,26.2,19.8,19.3,18.5,-4.0$, -4.3; HRMS (ESI-TOF) calcd for $\mathrm{C}_{47} \mathrm{H}_{68} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$839.4351, found 839.4358.

Allylic Alcohol 17. To a solution of TBDPS ether 16 ($174 \mathrm{mg}, 0.213 \mathrm{mmol}$) in MeCN (2.2 $\mathrm{mL})$ was added a mixed solution of TBAF (1.0 M solution in THF, $0.26 \mathrm{~mL}, 0.260 \mathrm{mmol}$) and
$\mathrm{AcOH}(15 \mu \mathrm{~L}, 0.256 \mathrm{mmol})$ at room temperature. After the mixture was stirred at room temperature for 5 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=10: 1,2: 1$) gave allylic alcohol $17(84.8 \mathrm{mg}, 68 \%)$ as a colorless oil: $R_{f}=0.33$ (hexane/EtOAc $\left.=2: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{23}-5.5(c 0.98$, CHCl_{3}); IR (neat) $3459,2952,2858,1740,1612 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.20(\mathrm{dd}, J=15.3,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dd}, J=$ $15.3,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.76-5.70(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 4.24-4.16(\mathrm{~m}, 4 \mathrm{H}), 3.94(\mathrm{ddd}, J=12.6$, $4.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{dt}, J=7.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=15.3$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.33(\mathrm{~m}, 3 \mathrm{H}), 1.47(\mathrm{dt}, J=12.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$, $1.28-1.24(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $171.2,159.0,131.9,131.7,131.3,130.6,129.8,129.6,113.6,98.7,78.7,76.3,71.6,69.3,65.9$, $63.5,55.3,51.6,41.6,33.4,31.7,29.9,26.2,19.8,18.5,-4.0,-4.3$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 601.3173$, found 601.3169 .

Alcohol 18. To a solution of alcohol $17(102 \mathrm{mg}, 0.176 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ were added $\mathrm{PhI}(\mathrm{OAc})_{2}(146 \mathrm{mg}, 0.440 \mathrm{mmol})$ and $\mathrm{TEMPO}(5.5 \mathrm{mg}, 35.2 \mu \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature for 1 h , the reaction was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=6: 1$) gave
the corresponding unsaturated aldehyde (102 mg), which was used for the next reaction without further purification.

To a solution of the PMB ether obtained above (102 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ and phosphate pH standard solution (0.2 mL) was added DDQ ($47.9 \mathrm{mg}, 0.211 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature for 1 h , the reaction was quenched with saturated aqueous NaHCO_{3}. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=3: 1$) gave alcohol 18 ($76.0 \mathrm{mg}, 94 \%$ in two steps $)$ as a colorless oil: $R_{f}=0.52($ hexane/EtOAc $=$ 1:1); $[\alpha]_{\mathrm{D}}{ }^{23}-14.4\left(c 0.97, \mathrm{CHCl}_{3}\right)$; IR (neat) $3490,2953,2858,1739,1681,1639 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=15.3,9.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.43-6.31 (m, 2 H$), 6.10(\mathrm{dd}, J=15.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{ddd}, J=8.0$, $5.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=$ $15.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.31(\mathrm{~m}, 3 \mathrm{H}), 1.70(\mathrm{dt}, J=12.7,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 1.45 (s, 3 H), 1.36 (s, 3 H), 0.90 ($\mathrm{s}, 9 \mathrm{H}$), 0.12 (s, 3 H), 0.10 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 193.6,171.1,151.9,143.0,130.8,130.6,98.8,77.2,72.7,69.7,65.9,51.7,41.5$, 36.5, 32.7, 29.9, 26.0, 19.8, 18.3, -3.8, -4.2; HRMS (ESI-TOF) calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{SiNa}[\mathrm{M}+$ $\mathrm{Na}]^{+} 479.2441$, found 479.2440 .

Triol 19. To a solution of acetonide $18(4.8 \mathrm{mg}, 10.5 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ was added $\mathrm{TiCl}_{4}(1.7 \mu \mathrm{~L}, 15.7 \mu \mathrm{~mol})$ at $-30^{\circ} \mathrm{C}$. After the mixture was stirred at $-30^{\circ} \mathrm{C}$ for 5 min , the
reaction was quenched with saturated aqueous NaHCO_{3}. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The aqueous phase was washed with EtOAc three times. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=4: 1,1: 1)$ gave triol $19(4.3 \mathrm{mg}, 98 \%)$ as a colorless oil: $R_{f}=0.09$ (hexane/EtOAc $=1: 1) ;[\alpha]_{\mathrm{D}}{ }^{27}-5.1\left(c 0.73, \mathrm{CHCl}_{3}\right)$; IR (neat) $3449,2928,2856,1737,1681$, $1639 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=15.3,9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.41-6.33(\mathrm{~m}, 2 \mathrm{H}), 6.10(\mathrm{dd}, J=15.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.27(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{ddd}, J=$ $10.4,5.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.57$ (m, 1 H), 2.53-2.51 (m, 2 H), 2.43-2.35 (m, 2 H), $1.86(\mathrm{dt}, J=14.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.55$ (m, 3 H), $0.91(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 193.7, $172.8,152.0,143.2,130.8,130.5,77.9,73.7,72.6,69.2,51.9,41.4,38.4,36.7,26.1,18.3$, -4.0; HRMS (ESI-TOF) calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 439.2128$, found 439.2126.

Tetraol 2a from 19. To a solution of TBS ether $\mathbf{1 9}$ ($12.4 \mathrm{mg}, 29.8 \mu \mathrm{~mol}$) in THF (1.5 mL) was added HF•pyr $(60 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . After the mixture was stirred at room temperature for 2 h , HF-pyr $(70 \mu \mathrm{~L})$ was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . After the mixture was stirred at room temperature for 6 h , the reaction was quenched with saturated aqueous NaHCO_{3}. The mixture was diluted with EtOAc, washed with saturated aqueous $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, and brine. The aqueous phase was washed with EtOAc three times. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration
and column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20: 1\right)$ gave tetraol 2a $(1.6 \mathrm{mg}, 18 \%)$ as a colorless oil and TBS ether $19(6.4 \mathrm{mg}, 52 \%$ recovery $)$. Tetraol 2a: $R_{f}=0.33\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ $=10: 1) ;[\alpha]_{\mathrm{D}}{ }^{22}+13.2\left(c 0.12, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $3417,2925,1731,1679,1636 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 9.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.50-6.46(\mathrm{~m}, 2 \mathrm{H}), 6.08$ (dd, $J=15.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.27(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.67$ (s, 3 H), 3.39 (t, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.54$ (m, 2 H), 2.46-2.37 (m, 2 H), 1.85 (ddd, $J=14.4$, $5.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 196.0,173.8,155.0$, 145.7, 131.9, 131.0, 77.8, 73.0, 72.6, 68.3, 52.0, 43.0, 39.9, 37.9; HRMS (ESI-TOF) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$325.1263, found 325.1271.

Diol 20. To a solution of TBS ether 17 ($160 \mathrm{mg}, 0.277 \mathrm{mmol}$) in $\mathrm{MeCN}(2.8 \mathrm{~mL})$ was added a mixed solution of TBAF (1.0 M solution in THF, $2.8 \mathrm{~mL}, 2.80 \mathrm{mmol}$) and AcOH (0.16 mL , 2.77 mmol) at room temperature. After the mixture was stirred at $60^{\circ} \mathrm{C}$ for 6 days, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The aqueous phase was washed with EtOAc three times. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=2: 1,0: 1$) gave diol $20(111 \mathrm{mg}, 86 \%)$ as a colorless oil: $R_{f}=0.09$ (hexane/EtOAc $=1: 1) ;[\alpha]_{\mathrm{D}}^{22}+10.5\left(c 0.71, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $3420,2928,2858,1738,1613$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.17(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 6.26-6.16(m, 2 H), 5.91-5.86(m, 1H), $5.62(\mathrm{dt}, J=14.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.47(\mathrm{~m}, 1 \mathrm{H})$,
$4.43(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.06(\mathrm{~m}, 1 \mathrm{H})$, 3.92-3.84(m, 3H), 3.60-3.56(m, 1 H$), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.48(\mathrm{~m}, 3 \mathrm{H}), 2.18$ (dd, $J=15.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.46-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 170.9,159.9,132.7,131.2,130.9,130.7,130.0,114.2$, $99.0,77.6,73.8,71.2,69.7,66.3,63.3,54.9,51.2,41.6,32.9,31.4,30.3,19.9$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 487.2308$, found 487.2306 .

Allylic Alcohol 21. To a solution of diol $20(94.4 \mathrm{mg}, 0.163 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL})$ were added 2,6-lutidine ($67 \mu \mathrm{~L}, 0.456 \mathrm{mmol}$) and TESOTf ($88 \mu \mathrm{~L}, 0.391 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature for 40 min , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with EtOAc , washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=20: 1,10: 1$) gave the corresponding bis-TES ether (111 mg, 98%) as a colorless oil: $R_{f}=0.71$ (hexane/EtOAc $=2: 1) ;[\alpha]_{\mathrm{D}}{ }^{26}+4.2\left(c 0.49, \mathrm{CHCl}_{3}\right)$; IR (neat) 2953, 2871, 1742, $1612 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{dd}, J=$ $15.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=15.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.73(\mathrm{dt}, J=15.0$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.15$ $(\mathrm{d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.12-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{q}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.35(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 3 \mathrm{H}), 2.22(\mathrm{dd}, J=15.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.44(\mathrm{~m}$, $2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{t}, J=8.2 \mathrm{~Hz}, 9 \mathrm{H}), 1.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 9 \mathrm{H}), 0.80(\mathrm{q}, J$
$=8.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.62(\mathrm{q}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 170.8,159.8,132.5$, $131.3,131.1,131.0,130.4,130.0,114.1,99.0,78.8,76.9,71.9,69.8,66.4,63.5,54.9,51.1$, $41.8,33.7,31.8,30.2,19.9,7.5,7.2,5.9,5.2$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}$ [M $+\mathrm{Na}]^{+} 715.4037$, found 715.4031.

To a solution of the corresponding TES ether ($99.7 \mathrm{mg}, 0.144 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.0 \mathrm{~mL})$ and $\mathrm{MeOH}(0.7 \mathrm{~mL})$ was added PPTS ($11.0 \mathrm{mg}, 43.0 \mu \mathrm{~mol}$) at $0^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature for 1 h , the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=10: 1,2: 1$) gave allylic alcohol 21 (75.1 mg , 90%) as a colorless oil: $R_{f}=0.53$ (hexane/EtOAc $=1: 1$); $[\alpha]_{\mathrm{D}}{ }^{21}+2.5\left(c 1.53, \mathrm{CHCl}_{3}\right)$; IR (neat) $3460,2952,2875,1739,1612 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2$ H), $6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.26-6.16(\mathrm{~m}, 2 \mathrm{H}), 5.90-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.64-5.57(\mathrm{~m}, 1 \mathrm{H})$, $4.48(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.07(\mathrm{~m}, 1 \mathrm{H})$, 3.96-3.93 (m, 1 H), 3.90 (brs, 2 H), 3.62-3.58 (m, 1 H), 3.34 (s, 3 H), 3.33 (s, 3 H), 2.59-2.54 (m, 3 H), $2.24(\mathrm{dd}, J=15.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$, $1.08(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.79(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 170.9,159.8$, $132.4,131.3,131.2,131.1,131.0,130.0,114.1,99.0,78.7,76.8,71.8,69.8,66.4,63.2,54.9$, $51.2,41.8,33.7,31.7,30.2,19.9,7.5,5.9$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+$ $\mathrm{Na}]^{+} 601.3173$, found 601.3171 .

Alcohol 22. To a solution of alcohol $21(45.6 \mathrm{mg}, 78.8 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL})$ were added $\mathrm{PhI}(\mathrm{OAc})_{2}(65.0 \mathrm{mg}, 0.197 \mathrm{mmol})$ and TEMPO $(2.5 \mathrm{mg}, 15.8 \mu \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature for 5 h , the reaction was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=5: 1$) gave the corresponding unsaturated aldehyde (44.5 mg), which was used for the next reaction without further purification.

To a solution of the PMB ether obtained above (44.5 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ and phosphate pH standard solution $(0.1 \mathrm{~mL})$ was added $\mathrm{DDQ}(26.0 \mathrm{mg}, 0.116 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature for 3 h , the reaction was quenched with saturated aqueous NaHCO_{3}. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=2: 1$) gave alcohol 22 ($27.5 \mathrm{mg}, 76 \%$ in two steps) as a colorless oil: $R_{f}=0.23$ (hexane $/ \mathrm{EtOAc}=$ 2:1); $[\alpha]_{\mathrm{D}}{ }^{23}-15.2\left(c 1.00, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $3479,2953,2876,1739,1682,1639 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=15.4,10.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.44-6.30 (m, 2 H), $6.10(\mathrm{dd}, J=15.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.01(\mathrm{~m}, 1 \mathrm{H})$, $3.78-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.32(\mathrm{~m}$, $2 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.65(\mathrm{q}, J=8.0$ $\mathrm{Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 193.6, 171.1, 151.9, 143.0, 130.8, 130.6, 98.8, 72.8,
$70.0,65.9,51.7,41.5,36.6,32.5,29.9,19.8,7.0,5.3$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 479.2441$, found 479.2446 .

Tetraol 2a from 22. To a solution of acetonide $22(4.1 \mathrm{mg}, 8.99 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added $\mathrm{TiCl}_{4}(2.0 \mu \mathrm{~L}, 18.2 \mu \mathrm{~mol})$ at $-30^{\circ} \mathrm{C}$. The mixture was gradually warmed up to room temperature for 1 h . After the mixture was stirred at room temperature for 27 h , the reaction was quenched with saturated aqueous NaHCO_{3}. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The aqueous phase was washed with EtOAc four times. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10: 1\right)$ gave tetraol 2a $(2.0 \mathrm{mg}, 74 \%)$.

Ketone 23. To a solution of diol $20(59.5 \mathrm{mg}, 0.128 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ were added imidazole ($12.2 \mathrm{mg}, 0.179 \mathrm{mmol}$) and $\mathrm{TESCl}(26 \mu \mathrm{~L}, 0.154 \mathrm{mmol})$ at $-30{ }^{\circ} \mathrm{C}$. After the mixture was gradually warmed up to $-10^{\circ} \mathrm{C}$ for 30 min , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=$ 5:1) gave the corresponding mono-TES ether (60.8 mg), which was used for the next reaction without further purification.

To a suspension of the alcohol obtained above (60.8 mg) and MS4 $\AA\left(50.0 \mathrm{mg}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.3 \mathrm{~mL})$ were added $\mathrm{NMO}(64.0 \mathrm{mg}, 0.546 \mathrm{mmol})$ and TPAP $(1.8 \mathrm{mg}, 5.30 \mu \mathrm{~mol})$ at room temperature. After the mixture was stirred at room temperature for 8 h , the mixture was
filtered through a Celite pad and washed with EtOAc. Concentration and column chromatography (hexane/EtOAc $=4: 1$) gave ketone $23(54.8 \mathrm{mg}, 74 \%$ in two steps) as a colorless oil: $R_{f}=0.56($ hexane $/ E t O A c=2: 1) ;[\alpha]_{D}{ }^{22}+15.6\left(c 0.50, \mathrm{CHCl}_{3}\right)$; IR (neat) 2953, 2871, 1738, $1613 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{dd}, J=14.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=15.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dt}, J=$ $15.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dt}, J=14.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.51(\mathrm{~m}, 2 \mathrm{H}), 4.37-4.16(\mathrm{~m}, 3 \mathrm{H})$, $4.10(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.66-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{dd}, J=15.8$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{dd}, J=15.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{dt}, J=12.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.35(\mathrm{~m}, 1$ H), $1.40(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.60(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 206.8,170.5,159.8,132.9,132.1,130.6,130.0,129.7,129.1,114.1,99.4$, 80.4, 73.4, 72.3, 66.1, 63.4, 54.8, 51.2, 41.2, 35.7, 32.2, 30.1, 19.3, 7.2, 5.1; HRMS (ESI-TOF) calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 599.3016$, found 599.3012.

Alcohol 24. To a solution of ketone $23(8.5 \mathrm{mg}, 14.7 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(1.0 \mathrm{mg}, 26.4 \mu \mathrm{~mol})$ at $-78^{\circ} \mathrm{C}$. After the mixture was gradually warmed up to $0^{\circ} \mathrm{C}$ for 20 min , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=3: 1$) gave alcohol $24(8.3 \mathrm{mg}, 98 \%)$ as a colorless oil: $R_{f}=0.30($ hexane $/ E t O A c=2: 1) ;[\alpha]_{\mathrm{D}}{ }^{22}+20.8\left(c 0.44, \mathrm{CHCl}_{3}\right)$; IR (neat) $3518,2953,2885$, $1740,1612 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}$,
$2 \mathrm{H}), 6.40(\mathrm{dd}, J=15.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=15.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.69(\mathrm{~m}, 2 \mathrm{H})$, $4.49(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.00-3.97(\mathrm{~m}, 1 \mathrm{H})$, $3.52(\mathrm{t}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.68-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.44(\mathrm{~m}, 2 \mathrm{H})$, $2.12(\mathrm{dd}, J=15.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.62(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 170.8,159.8,132.8$, $131.6,131.1,130.2,130.2,129.9,114.1,99.1,78.4,74.7,71.7,70.0,66.2,63.4,54.9,51.1$, $41.4,34.2,32.4,30.3,19.8,7.2,5.1$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 601.3173, found 601.3183.

Allylic Alcohol 25. To a solution of alcohol $24(8.3 \mathrm{mg}, 14.4 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ were added 2,6-lutidine ($17 \mu \mathrm{~L}, 0.113 \mathrm{mmol}$) and $\operatorname{TESOTf}(24 \mu \mathrm{~L}, 0.107 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature for 4 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=10: 1$) gave the corresponding bis-TES ether (10.1 mg), which was used for the next reaction without further purification.

To a solution of the TES ether obtained above $(10.1 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and $\mathrm{MeOH}(0.1$ $\mathrm{mL})$ was added PPTS $(1.8 \mathrm{mg}, 7.30 \mu \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h, the reaction was quenched with $E t_{3} \mathrm{~N}$. Concentration and column chromatography (hexane/EtOAc $=3: 1)$ gave allylic alcohol $\mathbf{2 5}(8.5 \mathrm{mg}$, quant in two steps) as a colorless oil:
$R_{f}=0.22$ (hexane $\left./ \mathrm{EtOAc}=2: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{21}+11.2\left(c 1.15, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $3463,2952,2871$, $1739,1612 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.22(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.25-6.21(\mathrm{~m}, 2 \mathrm{H}), 5.81-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.64-5.57(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.35(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H})$, 3.73 (dd, $J=7.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.68(\mathrm{~m}$, 1 H), 2.57-2.48 (m, 2 H), 2.16 (dd, $J=15.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.48$ (s, 3 H), 1.48-1.42 (m, 2 H), $1.41(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.76(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 170.9,159.8,132.4,131.5,131.2,130.9,129.8,129.6,114.1,99.1,79.6,76.4,71.4,66.1$, $63.2,54.9,51.2,41.6,33.5,32.9,30.4,19.8,7.6,5.9$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 601.3173$, found 601.3170 .

Alcohol 26. To a solution of alcohol $25(8.5 \mathrm{mg}, 14.6 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ were added $\operatorname{PhI}(\mathrm{OAc})_{2}(12.1 \mathrm{mg}, 36.5 \mu \mathrm{~mol})$ and TEMPO $(1.0 \mathrm{mg}, 6.40 \mu \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature for 3 h , the reaction was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=5: 1$) gave the corresponding unsaturated aldehyde (7.6 mg), which was used for the next reaction without further purification.

To a solution of the PMB ether obtained above (7.6 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ and phosphate pH standard solution $(40 \mu \mathrm{~L})$ was added $\mathrm{DDQ}(3.6 \mathrm{mg}, 16.0 \mu \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$. After the mixture
was stirred at room temperature for 2 h , the reaction was quenched with saturated aqueous NaHCO_{3}. The mixture was diluted with EtOAc , washed with saturated aqueous NaHCO_{3}, $\mathrm{H}_{2} \mathrm{O}$, and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=2: 1)$ gave alcohol $26\left(5.5 \mathrm{mg}, 82 \%\right.$ in two steps) as a colorless oil: $R_{f}=0.16$ (hexane/EtOAc $=2: 1$); $[\alpha]_{\mathrm{D}}{ }^{21}-35.7\left(c 0.47, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $3490,2954,2871,1739,1682$, $1641 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=15.2,10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.42-6.26(\mathrm{~m}, 2 \mathrm{H}), 6.09(\mathrm{dd}, J=15.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.94$ (m, 1 H), 3.71-3.69 (m, 1 H), $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.30(\mathrm{~m}, 4 \mathrm{H})$, $1.65-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.26-1.17(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H})$, 0.69-0.61 (m, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.6, 171.0, 151.9, 142.6, 130.7, 130.6, 98.9, 77.1, 71.0, 69.3, 65.5, 51.7, 41.4, 39.2, 31.9, 29.9, 19.6, 7.1, 5.3; HRMS (ESI-TOF) calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 479.2441$, found 479.2442.

Tetraol 2b. To a solution of acetonide $26(4.1 \mathrm{mg}, 8.98 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added $\mathrm{TiCl}_{4}(1.2 \mu \mathrm{~L}, 10.8 \mu \mathrm{~mol})$ at $-30^{\circ} \mathrm{C}$. After the mixture was stirred at $-30^{\circ} \mathrm{C}$ for 5 min , the reaction was quenched with saturated aqueous NaHCO_{3}. The mixture was diluted with EtOAc, washed with saturated aqueous $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, and brine. The aqueous phase was washed with EtOAc three times. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=1: 1$) gave the corresponding triol (3.0 mg, 80\%) as a colorless oil: $R_{f}=0.09$ (hexane/EtOAc $=1: 1$); $[\alpha]_{\mathrm{D}}{ }^{24}-14.1(c 0.42$,
CHCl_{3}); IR (neat) $3451,2954,2871,1737,1681,1639 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=15.2,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.44-6.29(\mathrm{~m}, 2 \mathrm{H}), 6.09(\mathrm{dd}, J=$ $15.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{brs}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $3.59-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2$ H), 0.99 (t, $J=7.9 \mathrm{~Hz}, 9 \mathrm{H}$), $0.67(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.7, $172.9,152.0,142.8,130.7,130.6,75.9,73.3,69.7,69.1,51.9,41.4,39.0,37.7,7.0,5.3$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 439.2128$, found 439.2131 .

To a solution of the corresponding TES ether ($9.6 \mathrm{mg}, 23.0 \mu \mathrm{~mol}$) in THF (1.0 mL) was added HF-pyr $(50 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. After the mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h , the reaction was quenched with saturated aqueous NaHCO_{3}. The mixture was diluted with EtOAc, washed with saturated aqueous $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, and brine. The aqueous phase was washed with EtOAc three times. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=30: 1\right)$ gave tetraol $\mathbf{2 b}(5.5 \mathrm{mg}, 79 \%)$ as a colorless oil: $R_{f}=$ $0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{21}-6.1\left(c 0.10, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $3367,2924,2858,1727$, 1675, $1635 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 9.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=15.6$, $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.51-6.41(\mathrm{~m}, 2 \mathrm{H}), 6.09(\mathrm{dd}, J=15.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.20(\mathrm{~m}, 1 \mathrm{H})$, $3.90-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=15.0$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{dd}, J=15.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.72(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 196.0, 173.7, 154.8, 145.0, 131.9, 131.2, 76.1, 72.9, 71.7, 67.7,
52.0, 43.1, 41.1, 38.7; HRMS (ESI-TOF) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 325.1263$, found 325.1266.

Diol 27. To a solution of β-hydroxy ketone $1 \mathbf{1 1}(595 \mathrm{mg}, 0.767 \mathrm{mmol})$ in $\mathrm{MeCN}(9.0 \mathrm{~mL})$ and AcOH (9.0 mL) was added $\mathrm{NaBH}(\mathrm{OAc})_{3}(244 \mathrm{mg}, 1.15 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. After the mixture was stirred at $-20{ }^{\circ} \mathrm{C}$ for $2 \mathrm{~h}, \mathrm{NaBH}(\mathrm{OAc})_{3}(81.3 \mathrm{mg}, 0.383 \mathrm{mmol})$ was added. After the mixture was stirred at $-20{ }^{\circ} \mathrm{C}$ for further 1 h , the reaction was quenched with saturated aqueous NaHCO_{3}. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=5: 1$) gave diol $27(565 \mathrm{mg}, 95 \%)$ as a colorless oil: $R_{f}=0.45$ (hexane/EtOAc $\left.=2: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{24}-9.1(c$ $1.00, \mathrm{CHCl}_{3}$); IR (neat) $3476,2930,2857,1739,1613 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ $7.73-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.09(\mathrm{~m}, 8 \mathrm{H}), 6.77(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{dd}, J=15.1,10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.18(\mathrm{dd}, J=15.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dt}, J=15.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{dt}, J=15.1,4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.37-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.07$ (brs, 1 H), $3.84-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2$ H), 2.34-2.29 (m, 2 H), 2.20-2.15 (m, 1 H$), 1.71-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H})$, $0.16(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 173.1,159.7$, 135.9, 134.2, 132.4, 131.4, 131.1, 130.7, 130.5, 129.9, 114.0, 80.3, 77.7, 72.2, 70.0, 66.3, 64.7, 54.8, 51.3, 41.4, 38.4, 34.2, 27.2, 26.5, 19.6, 18.8, -3.6, -4.1; HRMS (ESI-TOF) calcd for $\mathrm{C}_{44} \mathrm{H}_{64} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}$ [M $+\mathrm{Na}^{+} 799.4037$, found 799.4036 .

Diol 28. To a solution of diol 27 ($871 \mathrm{mg}, 1.12 \mathrm{mmol}$) in THF (11 mL) were added $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}(1.4 \mathrm{~mL}, 11.2 \mathrm{mmol})$ and $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(21.0 \mathrm{mg}, 0.112 \mathrm{mmol})$ at room temperature. After the mixture was stirred at room temperature for 2 h , the reaction was quenched with saturated aqueous NaHCO_{3}. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=7: 1$) gave the corresponding acetonide ($822 \mathrm{mg}, 90 \%$) as a colorless oil: R_{f} $=0.62($ hexane $/ \mathrm{EtOAc}=2: 1) ;[\alpha]_{\mathrm{D}}{ }^{24}-0.4\left(c 0.99, \mathrm{CHCl}_{3}\right) ;$ IR (neat) 2929, 2856, $1742 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.25(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{dd}, J=15.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=15.0$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.73-5.65(\mathrm{~m}, 2 \mathrm{H}), 4.47$ (s, 2 H$), 4.25-4.16$ (m, 3 H), $3.99-3.94$ (m, 1 H$)$, $3.81-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=15.6,8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.44-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.59$ (brs, 1 H$), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H})$, $1.08(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.1, $159.1,135.5,133.7,131.9,130.5,130.2,130.0,129.5,129.3,127.6,113.7,100.6,79.3,75.9$, $71.8,66.8,64.3,63.8,55.3,51.6,40.7,33.8,32.8,26.9,26.2,24.6,24.5,19.3,18.4,-4.0$, -4.3; HRMS (ESI-TOF) calcd for $\mathrm{C}_{47} \mathrm{H}_{68} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$839.4351, found 839.4348. To a solution of the corresponding bis-silyl ether ($409 \mathrm{mg}, 0.501 \mathrm{mmol}$) in $\mathrm{MeCN}(5.0 \mathrm{~mL})$ was added a mixed solution of TBAF (1.0 M solution in THF, $2.0 \mathrm{~mL}, 2.00 \mathrm{mmol}$) and AcOH $(0.10 \mathrm{~mL}, 2.00 \mathrm{mmol})$ at room temperature. After the mixture was stirred at reflux for 3 days,
the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The aqueous phase was washed with EtOAc twice. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=4: 1,1: 1)$ gave diol $28(154 \mathrm{mg}, 66 \%)$ as a colorless oil: $R_{f}=0.19$ (hexane/EtOAc $=1: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}+43.1\left(c 0.68, \mathrm{CHCl}_{3}\right)$; IR (neat) $3459,2925,1739,1612 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.25-6.15(\mathrm{~m}, 2$ H), $5.92-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.63-5.57(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.30(\mathrm{~m}, 1 \mathrm{H})$, $4.23(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2$ H), $3.54-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{dd}, J=15.6,8.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.23-2.18(m, 2 H), 2.08-2.01 (m, 1 H), 1.37 (s, 3 H), 1.28 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 170.8,159.8,132.8,131.2,131.2,130.9,130.6,129.8,114.2,100.8,77.8,73.8$, $71.3,67.1,64.2,63.3,54.9,51.1,40.9,32.9,32.5,25.1,25.0$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 487.2308$, found 487.2302.

Alcohol 29. To a solution of diol $\mathbf{2 8}(22.4 \mathrm{mg}, 48.2 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ were added 2,6-lutidine ($40 \mu \mathrm{~L}, 0.270 \mathrm{mmol}$) and TESOTf ($52 \mu \mathrm{~L}, 0.232 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature for 2 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=10: 1,4: 1$) gave the corresponding bis-TES ether (34.1 mg , quant) as a colorless oil: $R_{f}=0.50$ (hexane/EtOAc
$=4: 1) ;[\alpha]_{\mathrm{D}}{ }^{25}+16.4\left(c 0.23, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $2953,2871,1743,1612 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.46-6.35(\mathrm{~m}, 1 \mathrm{H})$, 6.34-6.24 (m, 1 H), 5.95-5.86 (m, 1 H), 5.73 (dt, $J=15.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.46-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.13(\mathrm{~m}, 3 \mathrm{H}), 4.05(\mathrm{dd}, J=5.9,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.50(\mathrm{q}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.45(\mathrm{~m}, 3 \mathrm{H}), 2.25(\mathrm{dd}, J$ $=15.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.10$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.02(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.84-0.76(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.62(\mathrm{q}, J=7.9$ $\mathrm{Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 170.8,159.8,132.6$, 131.3, 130.7, 130.4, 129.9, 114.1, $100.9,79.2,76.4,71.9,67.3,64.2,63.5,54.9,51.1,41.0,33.9,32.9,24.9,24.8,7.5,7.2,5.9$, 5.2; HRMS (ESI-TOF) calcd for $\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 715.4037$, found 715.4037.

To a solution of the corresponding TES ether ($15.0 \mathrm{mg}, 21.6 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ and $\mathrm{MeOH}(70 \mu \mathrm{~L})$ was added PPTS $(1.6 \mathrm{mg}, 6.32 \mu \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . After the mixture was stirred at room temperature for 30 min , the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$. The mixture was diluted with EtOAc , washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=7: 1$, 2:1) gave the corresponding allylic alcohol ($10.7 \mathrm{mg}, 88 \%$) as a colorless oil: $R_{f}=0.66$ (hexane/EtOAc $=1: 1) ;[\alpha]_{\mathrm{D}}{ }^{23}+12.8\left(c 0.74, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $3462,2952,2875,1742,1612$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 6.24-6.15 (m, 2 H), 5.88-5.81 (m, 1 H$), 5.63-5.57(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$,
4.44-4.39 (m, 1 H), $4.35(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.89(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.51-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.59-2.49(\mathrm{~m}, 4 \mathrm{H})$, $2.25(\mathrm{dd}, J=15.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}$, $3 \mathrm{H}), 1.10(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.79(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 170.8$, $159.8,132.5,131.2,131.1,131.0,129.9,114.1,100.9,79.1,76.3,71.9,67.3,64.2,63.2,54.9$, 51.1, 41.0, 33.8, 32.8, 24.9, 24.8, 7.5, 5.9; HRMS (ESI-TOF) calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+$ $\mathrm{Na}]^{+}$601.3173, found 601.3168.

To a solution of the corresponding allylic alcohol ($52.8 \mathrm{mg}, 91.3 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$ were added $\mathrm{PhI}(\mathrm{OAc})_{2}(76.0 \mathrm{mg}, 0.228 \mathrm{mmol})$ and TEMPO $(2.9 \mathrm{mg}, 18.3 \mu \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature for 4 h , the reaction was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=$ 5:1) gave the corresponding unsaturated aldehyde (48.8 mg), which was used for the next reaction without further purification.

To a solution of the PMB ether obtained above $(48.8 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ and phosphate pH standard solution (0.1 mL) was added DDQ ($26.0 \mathrm{mg}, 0.115 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature for 2 h , the reaction was quenched with saturated aqueous NaHCO_{3}. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=2: 1$)
gave alcohol 29 ($29.9 \mathrm{mg}, 72 \%$ in two steps) as a colorless oil: $R_{f}=0.61$ (hexane/EtOAc $=$ $1: 1) ;[\alpha]_{\mathrm{D}}{ }^{23}+5.8\left(c 0.88, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $3472,2953,2876,1741,1682,1639 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=15.2,10.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.44-6.29 (m, 2 H), $6.10(\mathrm{dd}, J=15.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.95(\mathrm{~m}, 1 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.63(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{dd}, J=15.6,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.39-2.31(m, 2H), 2.07-2.00(m, 1H), 1.63-1.56(m, 1 H$), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 0.97$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.65(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 193.6, 171.2, $151.8,142.9,131.0,130.7,100.8,72.8,67.3,63.7,51.7,40.7,36.8,33.5,24.6,24.5,7.0,5.4 ;$ HRMS (ESI-TOF) calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 479.2441$, found 479.2446 .

Tetraol 2c. To a solution of acetonide $29(20.7 \mathrm{mg}, 45.4 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL})$ was added $\mathrm{TiCl}_{4}(10 \mu \mathrm{~L}, 90.8 \mu \mathrm{~mol})$ at $-30^{\circ} \mathrm{C}$. The mixture was gradually warmed up to room temperature for 2 h . After the mixture was stirred at room temperature for 3 h , the reaction was quenched with saturated aqueous NaHCO_{3}. The mixture was diluted with EtOAc , washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The aqueous phase was washed with EtOAc four times. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10: 1\right)$ gave tetraol 2c $(6.1 \mathrm{mg}, 44 \%)$ as a colorless oil: $R_{f}=0.35$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{24}-8.9\left(c 0.10, \mathrm{CHCl}_{3}\right) ;$ IR (neat) 3388, 2925, 2853, 1730, 1674, $1636 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 9.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H})$, 6.50-6.47(m, 2 H), $6.08(\mathrm{dd}, J=15.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.27(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.89(\mathrm{~m}, 1 \mathrm{H})$,
$3.75-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.47(\mathrm{~m}$, 2 H), 2.43-2.37 (m, 1 H), 1.78 (ddd, $J=14.4,9.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{ddd}, J=14.4,9.6,2.4$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 196.0,173.8,155.5,145.8,131.8,131.0,78.1,73.1$, 70.6, 66.4, 52.0, 43.9, 40.3, 37.8; HRMS (ESI-TOF) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 325.1263, found 325.1271.

Ketone 30. To a solution of diol $28(10.8 \mathrm{mg}, 23.4 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ were added imidazole ($2.2 \mathrm{mg}, 32.8 \mu \mathrm{~mol}$) and $\mathrm{TESCl}(4.7 \mu \mathrm{~L}, 28.1 \mu \mathrm{~mol})$ at $-30^{\circ} \mathrm{C}$. After the mixture was stirred at $-30^{\circ} \mathrm{C}$ for 30 min , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=4: 1$) gave the corresponding mono-TES ether (12.9 mg), which was used for the next reaction without further purification.

To a suspension of the alcohol obtained above (12.9 mg) and MS4 $\AA(15.0 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.3 \mathrm{~mL})$ were added $\mathrm{NMO}(13.4 \mathrm{mg}, 0.115 \mathrm{mmol})$ and TPAP $(1.0 \mathrm{mg}, 2.85 \mu \mathrm{~mol})$ at room temperature. After the mixture was stirred at room temperature for 8 h , the mixture was filtered through a Celite pad and washed with EtOAc. Concentration and column chromatography (hexane/EtOAc $=4: 1$) gave ketone $\mathbf{3 0}(10.3 \mathrm{mg}, 76 \%$ in two steps) as a colorless oil: $R_{f}=0.56$ (hexane/EtOAc $\left.=2: 1\right) ;[\alpha]_{\mathrm{D}} 22+28.7\left(c 0.53, \mathrm{CHCl}_{3}\right)$; IR (neat) 2953, 2871, 1739, $1613 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=$
$8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{dd}, J=13.7,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dt}, J=15.1,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.76(\mathrm{~m}$, $1 \mathrm{H}), 5.72-5.64(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=10.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.27$ (m, 3 H), $4.10(\mathrm{t}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 6 \mathrm{H}), 2.64-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{dd}, J=16.0,8.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.13-2.04 (m, 2 H), 1.60-1.53 (m, 1 H$), 1.36$ (s, 3 H), 1.25 (s, 3 H), $1.00(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 9 \mathrm{H}), 0.60(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 207.5,170.4,159.9$, 133.0, $132.1,130.6,129.9,128.8,114.1,101.3,81.2,72.2,70.5,63.8,63.4,54.9,51.2,40.4,35.8$, 33.1, 25.1, 24.5, 7.2, 5.1; HRMS (ESI-TOF) calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 599.3016$, found 599.3013.

Alcohol 31. To a solution of ketone $\mathbf{3 0}(5.2 \mathrm{mg}, 9.02 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(0.4 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(1.0 \mathrm{mg}, 26.4 \mu \mathrm{~mol})$ at $-78^{\circ} \mathrm{C}$. After the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=3: 1)$ gave alcohol $31\left(5.4 \mathrm{mg}\right.$, quant) as a colorless oil: $R_{f}=$ 0.33 (hexane/EtOAc $=2: 1$); $[\alpha]_{\mathrm{D}}^{22}+32.0\left(c 1.11, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $3518,2953,2871,1739$, $1613 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.19(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.39(\mathrm{dd}, J=15.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=15.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.78-5.67(\mathrm{~m}, 2 \mathrm{H}), 4.47$ $(\mathrm{d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H})$, 4.04-3.98(m, 1 H$), 3.54-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.62(\mathrm{~m}, 1 \mathrm{H})$, 2.53-2.38 (m, 2 H), 2.12 (dd, $J=11.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}$,
$3 \mathrm{H}), 1.22-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.61(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 170.7,159.8,132.9,131.6,130.1,130.1,129.9,129.8,114.1,100.9,78.3,74.4$, 71.7, 67.7, 63.9, 63.4, 54.9, 51.1, 40.7, 34.1, 33.8, 24.9, 7.2, 5.1; HRMS (ESI-TOF) calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 601.3173$, found 601.3165 .

Alcohol 32. To a solution of alcohol $31(23.2 \mathrm{mg}, 40.0 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ were added 2,6-lutidine ($17 \mu \mathrm{~L}, 0.113 \mathrm{mmol}$) and TESOTf $(24 \mu \mathrm{~L}, 0.107 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature for 30 min , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with EtOAc , washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=10: 1$) gave the corresponding bis-TES ether (28.1 mg), which was used for the next reaction without further purification.

To a solution of the TES ether obtained above (28.1 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.4 \mathrm{~mL})$ and $\mathrm{MeOH}(0.2$ mL) was added PPTS ($3.1 \mathrm{mg}, 12.5 \mu \mathrm{~mol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . After the mixture was stirred at room temperature for 20 min , the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$. The mixture was diluted with EtOAc , washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=7: 1,1: 1$) gave the corresponding allylic alcohol ($16.9 \mathrm{mg}, 72 \%$ in two steps) as a colorless oil: $R_{f}=0.44$ (hexane/EtOAc $=1: 1) ;[\alpha]_{\mathrm{D}}{ }^{22}+27.5\left(c 0.65, \mathrm{CHCl}_{3}\right)$; IR (neat) $3465,2952,2885,1739,1612$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$,
6.27-6.11(m, 2 H), 5.83-5.74(m, 1 H$), 5.65-5.54(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.78$ (dd, $J=10.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 6 \mathrm{H}), 2.74-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.44$ (m, 3 H), 2.20 (dd, $J=15.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$, $1.09(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.80-0.69(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 170.8,159.8$, $132.3,131.5,131.4,131.2,131.0,129.7,114.1,100.9,80.1,75.6,71.7,68.3,63.9,63.2,54.9$, $51.1,40.9,34.6,33.8,25.2,24.6,7.5,5.9$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+$ $\mathrm{Na}]^{+}$601.3173, found 601.3170.

To a solution of the corresponding allylic alcohol ($16.9 \mathrm{mg}, 29.2 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ were added $\mathrm{PhI}(\mathrm{OAc})_{2}(24.2 \mathrm{mg}, 73.0 \mu \mathrm{~mol})$ and TEMPO $(1.0 \mathrm{mg}, 6.40 \mu \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature for 3 h , the reaction was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=5: 1$) gave the corresponding unsaturated aldehyde (13.5 mg), which was used for the next reaction without further purification.

To a solution of the PMB ether obtained above (13.5 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and phosphate pH standard solution ($25 \mu \mathrm{~L}$) was added DDQ $(6.3 \mathrm{mg}, 28.0 \mu \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . After the mixture was stirred at room temperature for 4 h , the reaction was quenched with saturated aqueous NaHCO_{3}. The mixture was diluted with EtOAc , washed
with $\mathrm{H}_{2} \mathrm{O}$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/EtOAc $=4: 1,2: 1)$ gave alcohol $32\left(10.0 \mathrm{mg}, 75 \%\right.$ in two steps) as a colorless oil: R_{f} $=0.23($ hexane $/ E t O A c=2: 1) ;[\alpha]_{\mathrm{D}}{ }^{24}-5.8\left(c 1.16, \mathrm{CHCl}_{3}\right) ;$ IR (neat) 3490, 2952, 2871, 1739, $1681,1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=15.0$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42-6.26(\mathrm{~m}, 2 \mathrm{H}), 6.09(\mathrm{dd}, J=15.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.19(\mathrm{~m}, 1 \mathrm{H})$, $3.93-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=17.1,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.59-2.30(m, 5H), 1.76-1.69 (m, 1H), 1.65-1.57(m, 1H), $1.35(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 0.97$ (t, $J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.69-0.61(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.6,171.2,151.8$, 142.5, 130.7, 130.7, 100.9, 69.3, 67.9, 63.3, 51.7, 40.5, 39.4, 34.0, 24.8, 24.3, 7.1, 5.4; HRMS (ESI-TOF) calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 479.2441$, found 479.2438 .

Tetraol 2d. To a solution of acetonide $32(18.2 \mathrm{mg}, 39.9 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added $\mathrm{TiCl}_{4}(8.8 \mu \mathrm{~L}, 80.3 \mu \mathrm{~mol})$ at $-30{ }^{\circ} \mathrm{C}$. After the mixture was gradually warmed up to $0{ }^{\circ} \mathrm{C}$ for 30 min , the reaction was quenched with saturated aqueous NaHCO_{3}. The mixture was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The aqueous phase was washed with EtOAc four times. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10: 1\right)$ gave tetraol $\mathbf{2 d}(5.7 \mathrm{mg}, 47 \%)$ as a colorless oil: $R_{f}=0.25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{26}-19.1\left(c 0.03, \mathrm{CHCl}_{3}\right)$; IR (neat) 3390, 2921, 2852, 1730, 1677, $1637 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 9.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (dd, $J=15.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.51-6.41(\mathrm{~m}, 2 \mathrm{H}), 6.09(\mathrm{dd}, J=15.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.24$
$(\mathrm{m}, 1 \mathrm{H}), 3.95-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.56-2.43(\mathrm{~m}, 4 \mathrm{H}), 1.70(\mathrm{ddd}, J=14.4,10.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{ddd}, J=14.4,10.2,3.0 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 196.0,173.7,154.8,145.0,131.9,131.2,77.1,72.8$, 70.1, 66.4, 52.0, 43.8, 41.9, 38.7; HRMS (ESI-TOF) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 325.1263, found 325.1270 .

Acknowledgments

We are grateful to Dr. Chunguang Han and Dr. Yoshi Yamano (Nagoya University) for valuable discussions. We also gratefully thank Division of Instrumental Analysis, Okayama University, for the NMR measurements. We appreciate The Naito Foundation, The Research Foundation for Pharmaceutical Sciences, The Sumitomo Foundation, and The Uehara Memorial Foundation for their financial supports. This research was supported by a Grant-in Aid for Scientific Research (No. 24710250) from the Japan Society for the Promotion of Science (JSPS).

Supporting Information

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Footnotes

(1) Molinski, T. F.; Morinaka, B. I. Tetrahedron 2012, 68, 9307.
(2) For selected reviews on the structural elucidation of natural products by the chemical
synthesis, see: (a) Nicolaou, K. C.; Snyder, S. A. Angew. Chem., Int. Ed. 2005, 44, 1012. (b) Maier, M. E. Nat. Prod. Rep. 2009, 26, 1105. (c) Suyama, T. L.; Gerwick, W. H.; McPhail, K.
L. Bioorg. Med. Chem. 2011, 19, 6675.
(3) Kita, M.; Ohishi, N.; Konishi, K.; Kondo, M.; Koyama, T.; Kitamura, M.; Yamada, K.; Uemura, D. Tetrahedron 2007, 63, 6241.
(4) (a) Han, C.; Uemura, D. Tetrahedron Lett. 2008, 49, 6988. (b) Han, C.; Yamano, Y.; Kita, M.; Takamura, H.; Uemura, D. Tetrahedron Lett. 2009, 50, 5280. (c) Han, C.; Yamano, Y.; Kakiuchi, F.; Nakamura, K.; Uemura, D. Tetrahedron 2011, 67, 9622.
(5) (a) Takamura, H.; Ando, J.; Abe, T.; Murata, T.; Kadota, I.; Uemura, D. Tetrahedron Lett. 2008, 49, 4626. (b) Murata, T.; Sano, M.; Takamura, H.; Kadota, I.; Uemura, D. J. Org. Chem. 2009, 74, 4797. (c) Takamura, H.; Murata, T.; Asai, T.; Kadota, I.; Uemura, D. J. Org. Chem. 2009, 74, 6658. (d) Takamura, H.; Kadonaga, Y.; Yamano, Y.; Han, C.; Aoyama, Y.; Kadota, I.; Uemura, D. Tetrahedron Lett. 2009, 50, 863. (e) Takamura, H.; Kadonaga, Y.; Yamano, Y.; Han, C.; Kadota, I.; Uemura, D. Tetrahedron 2009, 65, 7449. (f) Takamura, H.; Kadonaga, Y.;

Kadota, I.; Uemura, D. Tetrahedron Lett. 2010, 51, 2603. (g) Takamura, H.; Kadonaga, Y.; Kadota, I.; Uemura, D. Tetrahedron 2010, 66, 7569. (h) Takamura, H.; Tsuda, K.; Kawakubo, Y.; Kadota, I.; Uemura, D. Tetrahedron Lett. 2012, 53, 4317. (i) Takamura, H.; Fujiwara, T.; Kadota, I.; Uemura, D. Beilstein J. Org. Chem. 2013, 9, 1931.
(6) For selected recent examples on the stereodivergent and stereoselective synthesis of
natural products toward the structural elucidation, see: (a) Kotaki, T.; Shinada, T.; Kaihara, K.; Ohfune, Y.; Numata, H. Org. Lett. 2009, 11, 5234. (b) Sui, B.; Yeh, E. A.-H.; Curran, D. P. J. Org. Chem. 2010, 75, 2942. (c) Tamura, S.; Ohno, T.; Hattori, Y.; Murakami, N. Tetrahedron Lett. 2010, 51, 1523. (d) Urabe, D.; Todoroki, H.; Masuda, K.; Inoue, M. Tetrahedron 2012, 68, 3210. (e) Takamura, H.; Wada, H.; Lu, N.; Ohno, O.; Suenaga, K.; Kadota, I. J. Org. Chem. 2013, 78, 2443.
(7) Higashibayashi, S.; Czechtizky, W.; Kobayashi, Y.; Kishi, Y. J. Am. Chem. Soc. 2003, 125, 14379.
(8) In reference 4 c , we reported that the relative stereostructural relationships of the C5/C6 and C6/C7 could be proposed as syn and syn, respectively. After the detailed consideration on the ${ }^{1} \mathrm{H}$ NMR data analysis, we concluded that we could not exclude the possibility of the combination of anti (C5/C6) and anti (C6/C7) relationships. Therefore, we decided to synthesize 2a-2d for the unambiguous configurational determination.
(9) Parikh, J. R.; Doering, W. v. E. J. Am. Chem. Soc. 1967, 89, 5505.
(10) Inoue, M.; Wang, J.; Wang, G.-X.; Ogasawara, Y.; Hirama, M. Tetrahedron 2003, 59, 5645.
(11) Evans, D. A.; Cee, V. J.; Siska, S. J. J. Am. Chem. Soc. 2006, 128, 9433.
(12) Our detailed examination on separating $\mathbf{1 1}$ and its C5-epimer was unfruitful. The minor diastereomers, which were derived from the C5-epimer of 11, could be separated by silica gel
column chromatography at the final stage of 2a-2d, respectively.
(13) De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. J. Org. Chem. 1997, 62, 6974.
(14) The transformation of $\mathbf{1 1}$ to the corresponding p-methoxybenzylidene acetal with DDQ was unsuccessful presumably due to the incompatibility of the 1,3-diene moiety.
(15) Chen, K.-M.; Hardtmann, G. E.; Prasad, K.; Repič O.; Shapiro, M. J. Tetrahedron Lett. 1987, 28, 155.
(16) Higashibayashi, S.; Shinko, K.; Ishizu, T.; Hashimoto, K.; Shirahama, H.; Nakata, M. Synlett 2000, 1306.
(17) Ghosh, S.; Rao, C. N. Tetrahedron Lett. 2010, 51, 2052.
(18) When the TBS ether 19 was subjected to the same reaction conditions, the formation of several products was observed.
(19) For a review on TPAP oxidation, see: Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639.
(20) Saksena, A. K.; Mangiaracina, P. Tetrahedron Lett. 1983, 24, 273.
(21) For comparison of the ${ }^{1} \mathrm{H}$ NMR spectra of the degraded product 2 and the synthetic products 2a-2d, see Supporting Information.

