124 research outputs found

    An optical spacer is no panacea for light collection in organic solar cells

    Get PDF
    The role of an optical spacer layer has been examined by optical simulations of organic solar cells with various bandgaps. The simulations have been performed with the transfer matrix method and the finite element method. The results show that no beneficial effect can be expected by adding an optical spacer to a solar cell with an already optimized active layer thickness. © 2009 American Institute of Physics.B. Viktor Andersson, David M. Huang, Adam J. Moulé and Olle Inganä

    Small Band Gap Polymers Synthesized via a Modified Nitration of 4,7-Dibromo-2,1,3-benzothiadiazole

    Get PDF
    The nitration of 4,7-dibromo-2,1,3-benzothiadiazole was modified by using CF3SO3H and HNO3 as the nitrating agent, and the related yield was improved greatly. On the basis of this improvement, two new small band gap polymers, P1TPQ and P3TPQ, were developed. Bulk heterojunction solar cells based on P3TPO and [6,6]-phenyl-C-71-butyric acid methyl ester exhibit interesting results with a power conversion efficiency of 21% and photoresponse up to 1.1 mu

    Status report on emerging photovoltaics

    Get PDF
    \ua9 2023 Society of Photo-Optical Instrumentation Engineers (SPIE).This report provides a snapshot of emerging photovoltaic (PV) technologies. It consists of concise contributions from experts in a wide range of fields including silicon, thin film, III-V, perovskite, organic, and dye-sensitized PVs. Strategies for exceeding the detailed balance limit and for light managing are presented, followed by a section detailing key applications and commercialization pathways. A section on sustainability then discusses the need for minimization of the environmental footprint in PV manufacturing and recycling. The report concludes with a perspective based on broad survey questions presented to the contributing authors regarding the needs and future evolution of PV

    On-chip microelectrodes for electrochemistry with moveable PPy bilayer actuators as working electrodes

    No full text
    We present electrochemical microactuators which have all the electrodes necessary for the actuation—the working, counter, and reference electrodes—on-chip. This is a first step towards an all-polymer system, i.e., a system that does not require a liquid electrolyte. The microactuators' performance was as good as when standard, off-chip counter and reference electrodes were used. Specifically, the speed of actuation was the same. In addition, we obtained a good cyclic voltammogram, although the oxidation and reduction peaks were shifted and some noise was present. Apart from application in an all-polymer system, we will also use these microactuators for studies on the effect of mechanical stimulation of living cells.Original Publication:Edwin Jager, Elisabeth Smela and Olle Inganäs, On-chip microelectrodes for electrochemistry with moveable PPy bilayer actuators as working electrodes, 1999, Sensors and actuators. B, Chemical, (56), 1-2, 73-78.http://dx.doi.org/10.1016/S0925-4005(99)00159-8Copyright: Elsevierhttp://www.elsevier.com
    • …
    corecore