845 research outputs found

    Upper limits of particle emission from high-energy collision and reaction near a maximally rotating Kerr black hole

    Full text link
    The center-of-mass energy of two particles colliding near the horizon of a maximally rotating black hole can be arbitrarily high if the angular momentum of either of the incident particles is fine-tuned, which we call a critical particle. We study particle emission from such high-energy collision and reaction in the equatorial plane fully analytically. We show that the unconditional upper limit of the energy of the emitted particle is given by 218.6% of that of the injected critical particle, irrespective of the details of the reaction and this upper limit can be realized for massless particle emission. The upper limit of the energy extraction efficiency for this emission as a collisional Penrose process is given by 146.6%, which can be realized in the collision of two massive particles with optimized mass ratio. Moreover, we analyze perfectly elastic collision, Compton scattering, and pair annihilation and show that net positive energy extraction is really possible for these three reactions. The Compton scattering is most efficient among them and the efficiency can reach 137.2%. On the other hand, our result is qualitatively consistent with the earlier claim that the mass and energy of the emitted particle are at most of order the total energy of the injected particles and hence we can observe neither super-heavy nor super-energetic particles.Comment: 22 pages, 3 figures, typos corrected, reference updated, accepted for publication in Physical Review D, typos correcte

    Quantum Dynamics of Three Coupled Atomic Bose-Einstein Condensates

    Get PDF
    The simplest model of three coupled Bose-Einstein Condensates (BEC) is investigated using a group theoretical method. The stationary solutions are determined using the SU(3) group under the mean field approximation. This semiclassical analysis using the system symmetries shows a transition in the dynamics of the system from self trapping to delocalization at a critical value for the coupling between the condensates. The global dynamics are investigated by examination of the stable points and our analysis shows the structure of the stable points depends on the ratio of the condensate coupling to the particle-particle interaction, undergoes bifurcations as this ratio is varied. This semiclassical model is compared to a full quantum treatment, which also displays the dynamical transition. The quantum case has collapse and revival sequences superposed on the semiclassical dynamics reflecting the underlying discreteness of the spectrum. Non-zero circular current states are also demonstrated as one of the higher dimensional effects displayed in this system.Comment: Accepted to PR

    A symmetry analyser for non-destructive Bell state detection using EIT

    Full text link
    We describe a method to project photonic two-qubit states onto the symmetric and antisymmetric subspaces of their Hilbert space. This device utilizes an ancillary coherent state, together with a weak cross-Kerr non-linearity, generated, for example, by electromagnetically induced transparency. The symmetry analyzer is non-destructive, and works for small values of the cross-Kerr coupling. Furthermore, this device can be used to construct a non-destructive Bell state detector.Comment: Final published for

    Proton-Deuteron Elastic Scattering from 2.5 to 22.5 MeV

    Get PDF
    We present the results of a calculation of differential cross sections and polarization observables for proton-deuteron elastic scattering, for proton laboratory energies from 2.5 to 22.5 MeV. The Paris potential parametrisation of the nuclear force is used. As solution method for the charged-composite particle equations the 'screening and renormalisation approach' is adopted which allows to correctly take into account the Coulomb repulsion between the two protons. Comparison is made with the precise experimental data of Sagara et al. [Phys. Rev. C 50, 576 (1994)] and of Sperison et al. [Nucl. Phys. A422, 81 (1984)].Comment: 24 pages, 8 eps figures, uses REVTe

    A Reilly formula and eigenvalue estimates for differential forms

    Full text link
    We derive a Reilly-type formula for differential p-forms on a compact manifold with boundary and apply it to give a sharp lower bound of the spectrum of the Hodge Laplacian acting on differential forms of an embedded hypersurface of a Riemannian manifold. The equality case of our inequality gives rise to a number of rigidity results, when the geometry of the boundary has special properties and the domain is non-negatively curved. Finally we also obtain, as a by-product of our calculations, an upper bound of the first eigenvalue of the Hodge Laplacian when the ambient manifold supports non-trivial parallel forms.Comment: 22 page

    On contribution of three-body forces to NdNd interaction at intermediate energies

    Get PDF
    Available data on large-angle nucleon-deuteron elastic scattering Nd→dNNd\to dN below the pion threshold give a signal for three-body forces. There is a problem of separation of possible subtle aspects of these forces from off-shell effects in two-nucleon potentials. By considering the main mechanisms of the process, we show qualitatively that in the quasi-binary reaction N+d→(NN)+NN+d\to (NN)+N with the final spin singlet NN-pair in the S-state the relative contribution of the 3N forces differs substantially from the elastic channel. It gives a new testing ground for the problem in question.Comment: 9 pages, Latex, 3 Postscript figure

    Multiple-photon resolving fiber-loop detector

    Get PDF
    We show first reconstructions of the photon-number distribution obtained with a multi-channel fiber-loop detector. Apart from analyzing the statistics of light pulses this device can serve as a sophisticated postselection device for experiments in quantum optics and quantum information. We quantify its efficiency by means of the Fisher information and compare it to the efficiency of the ideal photodetector.Comment: 5 pages, 6 figure

    Memory Effect, Rejuvenation and Chaos Effect in the Multi-layer Random Energy Model

    Full text link
    We introduce magnetization to the Multi-layer Random Energy Model which has a hierarchical structure, and perform Monte Carlo simulation to observe the behavior of ac-susceptibility. We find that this model is able to reproduce three prominent features of spin glasses, i.e., memory effect, rejuvenation and chaos effect, which were found recently by various experiments on aging phenomena with temperature variations.Comment: 10 pages, 14 figures, to be submitted to J. Phys. Soc. Jp

    Laser-triggered ion acceleration and table top isotope production

    Full text link
    We have observed deuterons accelerated to energies of about 2 MeV in the interaction of relativistically intense 10 TW, 400 fs laser pulse with a thin layer of deuterated polystyrene deposited on Mylar film. These high-energy deuterons were directed to the boron sample, where they produced ∌ 105∌105 atoms of positron active isotope 11C11C from the reaction 10B(d,n)11C.10B(d,n)11C. The activation results suggest that deuterons were accelerated from the front surface of the target. © 2001 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70713/2/APPLAB-78-5-595-1.pd
    • 

    corecore