5,212 research outputs found

    Rotating frames and gauge invariance in two-dimensional many-body quantum systems

    Full text link
    We study the quantization of many-body systems in two dimensions in rotating coordinate frames using a gauge invariant formulation of the dynamics. We consider reference frames defined by linear and quadratic gauge conditions. In both cases we discuss their Gribov ambiguities and commutator algebra. We construct the momentum operators, inner-product and Hamiltonian in both types of gauges, for systems with and without translation invariance. The analogy with the quantization of QED in non-covariant gauges is emphasized. Our results are applied to quasi-rigid systems in the Eckart frame.Comment: 18 pages, LaTeX2e, AmsLaTe

    Planetary nebulae and stellar kinematics in the flattened elliptical galaxy NGC 1344

    Full text link
    We present photometric and kinematic information obtained by measuring 197 planetary nebulae (PNs) discovered in the flattened Fornax elliptical galaxy NGC 1344 (also known as NGC 1340) with an on-band, off-band, grism + on-band filter technique. We build the PN luminosity function (PNLF) and use it to derive a distance modulus m-M=31.4, slightly smaller than, but in good agreement with, the surface brightness fluctuation distance. The PNLF also provides an estimate of the specific PN formation rate: 6x10^-12 PNs per year per solar luminosity. Combining the positional information from the on-band image with PN positions measured on the grism + on-band image, we can measure the radial velocities of 195 PNs, some of them distant more than 3 effective radii from the center of NGC 1344. We complement this data set with stellar kinematics derived from integrated spectra along the major and minor axes, and parallel to the major axis of NGC 1344. The line-of-sight velocity dispersion profile indicates the presence of a dark matter halo around this galaxy.Comment: 45 pages, 18 figures, accepted for publication in Ap

    Electrical conductivity measured in atomic carbon chains

    Full text link
    The first electrical conductivity measurements of monoatomic carbon chains are reported in this study. The chains were obtained by unraveling carbon atoms from graphene ribbons while an electrical current flowed through the ribbon and, successively, through the chain. The formation of the chains was accompanied by a characteristic drop in the electrical conductivity. The conductivity of carbon chains was much lower than previously predicted for ideal chains. First-principles calculations using both density functional and many-body perturbation theory show that strain in the chains determines the conductivity in a decisive way. Indeed, carbon chains are always under varying non-zero strain that transforms its atomic structure from cumulene to polyyne configuration, thus inducing a tunable band gap. The modified electronic structure and the characteristics of the contact to the graphitic periphery explain the low conductivity of the locally constrained carbon chain.Comment: 21 pages, 9 figure

    Delocalization of Wannier-Stark ladders by phonons: tunneling and stretched polarons

    Full text link
    We study the coherent dynamics of a Holstein polaron in strong electric fields. A detailed analytical and numerical analysis shows that even for small hopping constant and weak electron-phonon interaction, polaron states can become delocalized if a resonance condition develops between the original Wannier-Stark states and the phonon modes, yielding both tunneling and `stretched' polarons. The unusual stretched polarons are characterized by a phonon cloud that {\em trails} the electron, instead of accompanying it. In general, our novel approach allows us to show that the polaron spectrum has a complex nearly-fractal structure, due to the coherent coupling between states in the Cayley tree which describes the relevant Hilbert space. The eigenstates of a finite ladder are analyzed in terms of the observable tunneling and optical properties of the system.Comment: 7 pages, 4 figure

    Study of Heart Rate Variability in Bipolar Disorder: Linear and Non-Linear Parameters during Sleep.

    Get PDF
    The aim of the study is to define physiological parameters and vital signs that may be related to the mood and mental status in patients affected by bipolar disorder. In particular we explored the autonomic nervous system through the analysis of the heart rate variability. Many different parameters, in the time and in the frequency domain, linear and non-linear were evaluated during the sleep in a group of normal subject and in one patient in four different conditions. The recording of the signals was performed through a wearable sensorized T-shirt. Heart rate variability (HRV) signal and movement analysis allowed also obtaining sleep staging and the estimation of REM sleep percentage over the total sleep time. A group of eight normal females constituted the control group, on which normality ranges were estimated. The pathologic subject was recorded during four different nights, at time intervals of at least 1 week, and during different phases of the disturbance. Some of the examined parameters (MEANNN, SDNN, RMSSD) confirmed reduced HRV in depression and bipolar disorder. REM sleep percentage was found to be increased. Lempel–Ziv complexity and sample entropy, on the other hand, seem to correlate with the depression level. Even if the number of examined subjects is still small, and the results need further validation, the proposed methodology and the calculated parameters seem promising tools for the monitoring of mood changes in psychiatric disorders

    Suppression of hole-hole scattering in GaAs/AlGaAs heterostructures under uniaxial compression

    Full text link
    Resistance, magnetoresistance and their temperature dependencies have been investigated in the 2D hole gas at a [001] p-GaAs/Al0.5_{0.5}Ga0.5_{0.5}As heterointerface under [110] uniaxial compression. Analysis performed in the frame of hole-hole scattering between carriers in the two spin splitted subbands of the ground heavy hole state indicates, that h-h scattering is strongly suppressed by uniaxial compression. The decay time τ01\tau_{01} of the relative momentum reveals 4.5 times increase at a uniaxial compression of 1.3 kbar.Comment: 5 pages, 3 figures. submitted to Phys.Rev.

    Detection, photometry and slitless radial velocities of 535 planetary nebulae in the flattened elliptical galaxy NGC 4697

    Get PDF
    We have detected 535 planetary nebulae (PNs) in NGC 4697, using the classic on-band, off-band filter technique with the Focal Reducer and Spectrograph (FORS) at the Cassegrain focus of the first 8-meter telescope unit of the ESO Very Large Telescope. From our photometry we have built the [O III] 5007 planetary nebula luminosity function (PNLF) of NGC 4697. It indicates a distance of 10.5 Mpc, substantially smaller than a previous estimate of 24 Mpc used in earlier dynamical studies. The PNLF also provides an estimate of the specific PN formation rate. Combining the information from on-band images with PN positions on dispersed, slitless grism images, we have obtained radial velocities for 531 of the 535 PNs. They provide kinematic information up to a distance of almost three effective radii from the nucleus. Some rotation is detected in the outer regions, but the rotation curve of this galaxy appears to drop beyond one effective radius. Assuming an isotropic velocity distribution, the velocity dispersion profile is consistent with no dark matter within three effective radii of the nucleus (however, some dark matter can be present if the velocity distribution is anisotropic). We obtain a blue mass-to-light ratio of 11. Earlier M/L ratios for NGC 4697 were too small, because of the too large distance used for their derivation.Comment: 52 pages, 24 Postscript figures, ApJ 2001, in pres

    SeDAR: Reading Floorplans Like a Human—Using Deep Learning to Enable Human-Inspired Localisation

    Get PDF
    This is the final version. Available from Springer Verlag via the DOI in this record. The use of human-level semantic information to aid robotic tasks has recently become an important area for both Computer Vision and Robotics. This has been enabled by advances in Deep Learning that allow consistent and robust semantic understanding. Leveraging this semantic vision of the world has allowed human-level understanding to naturally emerge from many different approaches. Particularly, the use of semantic information to aid in localisation and reconstruction has been at the forefront of both fields. Like robots, humans also require the ability to localise within a structure. To aid this, humans have designed high-level semantic maps of our structures called floorplans. We are extremely good at localising in them, even with limited access to the depth information used by robots. This is because we focus on the distribution of semantic elements, rather than geometric ones. Evidence of this is that humans are normally able to localise in a floorplan that has not been scaled properly. In order to grant this ability to robots, it is necessary to use localisation approaches that leverage the same semantic information humans use. In this paper, we present a novel method for semantically enabled global localisation. Our approach relies on the semantic labels present in the floorplan. Deep Learning is leveraged to extract semantic labels from RGB images, which are compared to the floorplan for localisation. While our approach is able to use range measurements if available, we demonstrate that they are unnecessary as we can achieve results comparable to state-of-the-art without them.EPSRCInnovate UKNVIDIA Corporatio
    • 

    corecore