1,142 research outputs found

    Unsharp Degrees of Freedom and the Generating of Symmetries

    Get PDF
    In quantum theory, real degrees of freedom are usually described by operators which are self-adjoint. There are, however, exceptions to the rule. This is because, in infinite dimensional Hilbert spaces, an operator is not necessarily self-adjoint even if its expectation values are real. Instead, the operator may be merely symmetric. Such operators are not diagonalizable - and as a consequence they describe real degrees of freedom which display a form of "unsharpness" or "fuzzyness". For example, there are indications that this type of operators could arise with the description of space-time at the string or at the Planck scale, where some form of unsharpness or fuzzyness has long been conjectured. A priori, however, a potential problem with merely symmetric operators is the fact that, unlike self-adjoint operators, they do not generate unitaries - at least not straightforwardly. Here, we show for a large class of these operators that they do generate unitaries in a well defined way, and that these operators even generate the entire unitary group of the Hilbert space. This shows that merely symmetric operators, in addition to describing unsharp physical entities, may indeed also play a r{\^o}le in the generation of symmetries, e.g. within a fundamental theory of quantum gravity.Comment: 23 pages, LaTe

    On Dirac theory in the space with deformed Heisenberg algebra. Exact solutions

    Full text link
    The Dirac equation has been studied in which the Dirac matrices \hat{\boldmath\alpha}, \hat\beta have space factors, respectively ff and f1f_1, dependent on the particle's space coordinates. The ff function deforms Heisenberg algebra for the coordinates and momenta operators, the function f1f_1 being treated as a dependence of the particle mass on its position. The properties of these functions in the transition to the Schr\"odinger equation are discussed. The exact solution of the Dirac equation for the particle motion in the Coulomnb field with a linear dependence of the ff function on the distance rr to the force centre and the inverse dependence on rr for the f1f_1 function has been found.Comment: 13 page

    First Calorimetric Measurement of OI-line in the Electron Capture Spectrum of 163^{163}Ho

    Full text link
    The isotope 163^{163}Ho undergoes an electron capture process with a recommended value for the energy available to the decay, QECQ_{\rm EC}, of about 2.5 keV. According to the present knowledge, this is the lowest QECQ_{\rm EC} value for electron capture processes. Because of that, 163^{163}Ho is the best candidate to perform experiments to investigate the value of the electron neutrino mass based on the analysis of the calorimetrically measured spectrum. We present for the first time the calorimetric measurement of the atomic de-excitation of the 163^{163}Dy daughter atom upon the capture of an electron from the 5s shell in 163^{163}Ho, OI-line. The measured peak energy is 48 eV. This measurement was performed using low temperature metallic magnetic calorimeters with the 163^{163}Ho ion implanted in the absorber. We demonstrate that the calorimetric spectrum of 163^{163}Ho can be measured with high precision and that the parameters describing the spectrum can be learned from the analysis of the data. Finally, we discuss the implications of this result for the Electron Capture 163^{163}Ho experiment, ECHo, aiming to reach sub-eV sensitivity on the electron neutrino mass by a high precision and high statistics calorimetric measurement of the 163^{163}Ho spectrum.Comment: 5 pages, 3 figure

    Coherent States for the Non-Linear Harmonic Oscillator

    Full text link
    Wave packets for the Quantum Non-Linear Oscillator are considered in the Generalized Coherent State framerwork. To first order in the non-linearity parameter the Coherent State behaves very similarly to its classical counterpart. The position expectation value oscillates in a simple harmonic manner. The energy-momentum uncertainty relation is time independent as in a harmonic oscillator. Various features, (such as the Squeezed State nature), of the Coherent State have been discussed

    Asymptotically maximal families of hypersurfaces in toric varieties

    Full text link
    A real algebraic variety is maximal (with respect to the Smith-Thom inequality) if the sum of the Betti numbers (with Z2\mathbb{Z}_2 coefficients) of the real part of the variety is equal to the sum of Betti numbers of its complex part. We prove that there exist polytopes that are not Newton polytopes of any maximal hypersurface in the corresponding toric variety. On the other hand we show that for any polytope Δ\Delta there are families of hypersurfaces with the Newton polytopes (λΔ)λN(\lambda\Delta)_{\lambda \in \mathbb{N}} that are asymptotically maximal when λ\lambda tends to infinity. We also show that these results generalize to complete intersections.Comment: 18 pages, 1 figur

    Casimir Effect in the Presence of Minimal Lengths

    Full text link
    It is expected that the implementation of minimal length in quantum models leads to a consequent lowering of Planck's scale. In this paper, using the quantum model with minimal length of Kempf et al \cite{kempf0}, we examine the effect of the minimal length on the Casimir force between parallel plates.Comment: 10 pages, 2 figure

    WKB approximation in deformed space with minimal length

    Full text link
    The WKB approximation for deformed space with minimal length is considered. The Bohr-Sommerfeld quantization rule is obtained. A new interesting feature in presence of deformation is that the WKB approximation is valid for intermediate quantum numbers and can be invalid for small as well as very large quantum numbers. The correctness of the rule is verified by comparing obtained results with exact expressions for corresponding spectra.Comment: 13 pages Now it is avaible at http://stacks.iop.org/0305-4470/39/37

    Cryogenic micro-calorimeters for mass spectrometric identification of neutral molecules and molecular fragments

    Get PDF
    We have systematically investigated the energy resolution of a magnetic micro-calorimeter (MMC) for atomic and molecular projectiles at impact energies ranging from E13E\approx13 to 150 keV. For atoms we obtained absolute energy resolutions down to ΔE120\Delta E \approx 120 eV and relative energy resolutions down to ΔE/E103\Delta E/E\approx10^{-3}. We also studied in detail the MMC energy-response function to molecular projectiles of up to mass 56 u. We have demonstrated the capability of identifying neutral fragmentation products of these molecules by calorimetric mass spectrometry. We have modeled the MMC energy-response function for molecular projectiles and conclude that backscattering is the dominant source of the energy spread at the impact energies investigated. We have successfully demonstrated the use of a detector absorber coating to suppress such spreads. We briefly outline the use of MMC detectors in experiments on gas-phase collision reactions with neutral products. Our findings are of general interest for mass spectrometric techniques, particularly for those desiring to make neutral-particle mass measurements

    Online Demodulation and Trigger for Flux-ramp Modulated SQUID Signals

    Get PDF
    Due to the periodic characteristics of SQUIDs, a suitable linearization technique is required for SQUID-based readout. Flux-ramp modulation is a common linearization technique and is typically applied for the readout of a microwave SQUID multiplexer as well as since recently also for dc-SQUIDs. Flux-ramp modulation requires another stage in the signal processing chain to demodulate the SQUID output signal before further processing. For cryogenic microcalorimeters, the signal contains events that are given by a fast exponentially rising and slowly exponentially decaying pulses shape. The events shall be detected by a trigger engine and recorded by a storage logic. Since the data rate can be decreased significantly by demodulation and event detection, it is desirable to do both steps on the deployed fast FPGA logic during measurement before passing the data to a general-purpose processor. In this contribution, we show the implementation of efficient multi-channel flux-ramp demodulation computed at run-time on a SoC-FPGA. Furthermore, a concept and implementation for an online trigger and buffer mechanism with its theoretical trigger loss rates depending on buffer size is presented. Both FPGA modules can be operated with up to 500 MHz clock frequency and can efficiently process 32 channels. Correct functionality and data reduction capability of the modules are demonstrated in measurements utilizing magnetic microcalorimeter irradiated with an Iron-55 source for event generation and read out by a microwave SQUID multiplexer

    SDR-Based Readout Electronics for the ECHo Experiment

    Get PDF
    Due to their excellent energy resolution, the intrinsically fast signal rise time, the huge energy dynamic range, and the almost ideally linear detector response, metallic magnetic calorimeters (MMC)s are very well suited for a variety of applications in physics. In particular, the ECHo experiment aims to utilize large-scale MMC-based detector arrays to investigate the mass of the electron neutrino. Reading out such arrays is a challenging task which can be tackled using microwave SQUID multiplexing. Here, the detector signals are transduced into frequency shifts of superconducting microwave resonators, which can be deduced using a high-end software-defined radio (SDR) system. The ECHo SDR system is a custom-made modular electronics, which provides 400 channels equally distributed in a 4 to 8 GHz frequency band. The system consists of a superheterodyne RF frequency converter with two successive mixers, a modular conversion, and an FPGA board. For channelization, a novel heterogeneous approach, utilizing the integrated digital down conversion (DDC) of the ADC, a polyphase channelizer, and another DDC for demodulation, is proposed. This approach has excellent channelization properties while being resource-efficient at the same time. After signal demodulation, on-FPGA flux-ramp demodulation processes the signals before streaming it to the data processing and storage backend
    corecore