12 research outputs found

    Geotechnical Performance of Suction Caisson Installation in Multi-layered Seabed Profiles

    Get PDF
    Suction caissons consist of large cylindrical buckets made from steel. In order to serve as foundations for various offshore structures, suction caissons are pushed into the seabed under pressure differential exerted on their lid by an imposed suction. Despite their wide use in the oil and gas industry, there are still some uncertainties regarding their installation process as a result of changes in seabed profiles such as the existence of low permeability layers as well as the variation in soil properties with depth (e.g. permeability decreasing with depth due to an increase in soil density). It is known that seepage conditions play a pivotal role in the installation process, particularly in sand. Indeed, pressure gradients generated by the imposed suction inside the caisson cavity cause an overall reduction in the soil resistance around the caisson wall and at caisson tip, thereby assisting the penetration into the seabed. Successful installation of caisson foundations relies on accurate prediction of soil conditions, in particular soil shear resistance during the installation. Existing knowledge of the prediction of soil conditions and required suction during caisson installation has some limitations which often resulted into rather conservative design methods. Most design procedures used to control suction during caisson installation assume an isotropic and homogenous seabed profile. Moreover, the actual variation of pressure gradient around the caisson wall at different penetration depths is often ignored, although it significantly affects soil resistance. Natural seabed can possess a heterogeneous property where it may comprise of different layers of soils including the presence of layers with low-permeability i.e. clay or silt. In this paper, the effect of seepage on soil conditions during caisson installation is studied within the frame of the presence of a substratum that consists of silt. Suction induced seepage described throughout the installation process and its effects on frictional and tip resistance are considered. For this purpose, a numerical simulation is conducted on a normalised geometry of the suction caisson and surrounding soil, at different penetration depths. The distribution of pressure gradient on both inside and outside of the caisson wall is taken into consideration in both soil shear and tip resistance. Particular conclusions will be drawn on the implications of the presence of a low permeability silt layer on caisson installation

    DEM of triaxial tests on crushable sand

    Get PDF
    This paper presents simulations of high-pressure triaxial shear tests on a crushable sand. The discrete element method is used, featuring a large number of particles and avoiding the use of agglomerates. The triaxial model features a flexible membrane, therefore allowing realistic deformation, and a simple breakage mechanism is implemented using the octahedral shear stress induced in the particles. The simulations show that particle crushing is essential to replicate the realistic behaviour of sand (in particular the volumetric contraction) in high-pressure shear tests. The general effects of crushing during shear are explored, including its effects on critical states, and the influence of particle strength and confining pressure on the degree of crushing are discussed

    DEM of triaxial tests on crushable cemented sand

    Get PDF
    Using the discrete element method, triaxial simulations of cemented sand consisting of crushable particles are presented. The triaxial model used features a flexible membrane, allowing realistic deformation to occur, and cementation is modelled using inter-particle bonds. The effects of particle crushing are explored, as is the influence of cementation on the behaviour of the soil. An insight to the effects that cementation has on the degree of crushing is presented

    Investigating the effects of particle shape on normal compression and overconsolidation using DEM

    Get PDF
    Discrete element modelling of normal compression has been simulated on a sample of breakable two-ball clumps and compared to that of spheres. In both cases the size effect on strength is assumed to be that of real silica sand. The slopes of the normal compression lines are compared and found to be consistent with the proposed equation of the normal compression line. The values of the coefficient of earth pressure at rest K0,nc are also compared and related to the critical state fiction angles for the two materials. The breakable samples have then been unloaded to establish the stress ratios on unloading. At low overconsolidation ratios the values of K0 follow a well-established empirical relationship and realistic Poisson ratios are observed. On progressive unloading both samples head towards passive failure, and the values of the critical state lines in extension in q–p' space are found to be consistent with the critical state angles deduced from the values of K0 during normal compression. The paper highlights the important role of particle shape in governing the stress ratio during both normal compression and subsequent overconsolidation

    Discrete element modelling of scaled railway ballast under triaxial conditions

    Get PDF
    The aim of this study is to demonstrate the use of tetrahedral clumps to model scaled railway ballast using the discrete element method (DEM). In experimental triaxial tests, the peak friction angles for scaled ballast are less sensitive to the confining pressure when compared to full-sized ballast. This is presumed to be due to the size effect on particle strength, whereby smaller particles are statistically stronger and exhibit less abrasion. To investigate this in DEM, the ballast is modelled using clumps with breakable asperities to produce the correct volumetric deformation. The effects of the quantity and properties of these asperities are investigated, and it is shown that the strength affects the macroscopic shear strength at both high and low confining pressures, while the effects of the number of asperities diminishes with increasing confining pressure due to asperity breakage. It is also shown that changing the number of asperities only affects the peak friction angle but not the ultimate friction angle by comparing the angles of repose of samples with different numbers of asperities

    The response of reworked aerosols to climate through estimation of inter-particle forces

    Get PDF
    This paper describes the first use of inter-particle force measurement in reworked aerosols to better understand the mechanics of dust deflation and its consequent ecological ramifications. Dust is likely to carry hydrocarbons and micro-organisms including human pathogens and cultured microbes and thereby is a threat to plants, animals and human. Present-day global aerosol emissions are substantially greater than in 1850; however, the projected influx rates are highly disputable. This uncertainty, in part, has roots in the lack of understanding of deflation mechanisms. A growing body of literature shows that whether carbon emission continues to increase, plant transpiration drops and soil water retention enhances, allowing more greenery to grow and less dust to flux. On the other hand, a small but important body of geochemistry literature shows that increasing emission and global temperature leads to extreme climates, decalcification of surface soils containing soluble carbonate polymorphs and hence a greater chance of deflation. The consistency of loosely packed reworked silt provides background data against which the resistance of dust’s bonding components (carbonates and water) can be compared. The use of macro-scale phenomenological approaches to measure dust consistency is trivial. Instead, consistency can be measured in terms of inter-particle stress state. This paper describes a semi-empirical parametrisation of the inter-particle cohesion forces in terms of the balance of contact-level forces at the instant of particle motion. We put forward the hypothesis that the loss of Ca2+-based pedogenic salts is responsible for much of the dust influx and surficial drying pays a less significant role

    The response of reworked aerosols to climate through estimation of inter-particle forces

    Get PDF
    This paper describes the first use of inter-particle force measurement in reworked aerosols to better understand the mechanics of dust deflation and its consequent ecological ramifications. Dust is likely to carry hydrocarbons and micro-organisms including human pathogens and cultured microbes and thereby is a threat to plants, animals and human. Present-day global aerosol emissions are substantially greater than in 1850; however, the projected influx rates are highly disputable. This uncertainty, in part, has roots in the lack of understanding of deflation mechanisms. A growing body of literature shows that whether carbon emission continues to increase, plant transpiration drops and soil water retention enhances, allowing more greenery to grow and less dust to flux. On the other hand, a small but important body of geochemistry literature shows that increasing emission and global temperature leads to extreme climates, decalcification of surface soils containing soluble carbonate polymorphs and hence a greater chance of deflation. The consistency of loosely packed reworked silt provides background data against which the resistance of dust’s bonding components (carbonates and water) can be compared. The use of macro-scale phenomenological approaches to measure dust consistency is trivial. Instead, consistency can be measured in terms of inter-particle stress state. This paper describes a semi-empirical parametrisation of the inter-particle cohesion forces in terms of the balance of contact-level forces at the instant of particle motion. We put forward the hypothesis that the loss of Ca2+-based pedogenic salts is responsible for much of the dust influx and surficial drying pays a less significant role

    Modelling suction caisson installation in sand using FLAC3D

    No full text
    Suction caisson foundations have been very popular in oil and gas industry and the current trend is to extend their use to offshore wind farms. A suction caisson is an upturned ?bucket? of cylindrical shape made from steel. Seepage conditions play a pivotal role in suction caisson installation process in sand. Pressure gradients generated by the imposed suction inside the caisson cavity cause an overall reduction in the soil resistance around the caisson wall and tip. This transient soil loosening around the caisson wall helps caisson penetration into the seabed. However, these effects must be controlled to avoid soil failure due to critical conditions such as piping or loss of soil shear strength. In this paper, we endeavour to study the role of seepage on the suction caisson installation process in sand. We investigate the effect of seepage conditions on soil resistance to caisson penetration with a particular focus on how frictional and tip resistance are differently affected. For this purpose a series of finite difference simulations of suction caisson installation process are performed using FLAC3D models. The required suction is predicted using an explicit strategy which consists of updating current suction based on displacement history available after the previous prescribed displacement increment. The results of FLAC3D models show that this approach provides an insight on how soil resistance evolves under suction during the installation process and confirm the effect of seepage on total reduction of shear resistance around the caisson wall during installation in sand
    corecore