575 research outputs found

    Distinct retroelement classes define evolutionary breakpoints demarcating sites of evolutionary novelty

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large-scale genome rearrangements brought about by chromosome breaks underlie numerous inherited diseases, initiate or promote many cancers and are also associated with karyotype diversification during species evolution. Recent research has shown that these breakpoints are nonrandomly distributed throughout the mammalian genome and many, termed "evolutionary breakpoints" (EB), are specific genomic locations that are "reused" during karyotypic evolution. When the phylogenetic trajectory of orthologous chromosome segments is considered, many of these EB are coincident with ancient centromere activity as well as new centromere formation. While EB have been characterized as repeat-rich regions, it has not been determined whether specific sequences have been retained during evolution that would indicate previous centromere activity or a propensity for new centromere formation. Likewise, the conservation of specific sequence motifs or classes at EBs among divergent mammalian taxa has not been determined.</p> <p>Results</p> <p>To define conserved sequence features of EBs associated with centromere evolution, we performed comparative sequence analysis of more than 4.8 Mb within the tammar wallaby, <it>Macropus eugenii</it>, derived from centromeric regions (CEN), euchromatic regions (EU), and an evolutionary breakpoint (EB) that has undergone convergent breakpoint reuse and past centromere activity in marsupials. We found a dramatic enrichment for long interspersed nucleotide elements (LINE1s) and endogenous retroviruses (ERVs) and a depletion of short interspersed nucleotide elements (SINEs) shared between CEN and EBs. We analyzed the orthologous human EB (14q32.33), known to be associated with translocations in many cancers including multiple myelomas and plasma cell leukemias, and found a conserved distribution of similar repetitive elements.</p> <p>Conclusion</p> <p>Our data indicate that EBs tracked within the class Mammalia harbor sequence features retained since the divergence of marsupials and eutherians that may have predisposed these genomic regions to large-scale chromosomal instability.</p

    Novel Space-based Solar Power Technologies and Architectures for Earth and Beyond

    Get PDF
    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. Power beaming or wireless power transmission (WPT) can involve lasers or microwaves along with the associated power interfaces. Microwave and laser transmission techniques have been studied with several promising approaches to safe and efficient WPT identified. These investigations have included microwave phased array transmitters, as well as laser transmission and associated optics. There is a need to produce "proof-of-concept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space to surface sites. This paper briefly discusses achieving a promising approach to the solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming system in a space solar power application. Near-term uses of this SLA-laser-SLA system may include terrestrial and space exploration in near Earth space. Later uses may include beamed power for bases or vehicles on Mars

    Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries

    Get PDF
    Lithium-sulfur (Li-S) batteries are described extensively in the literature, but existing computational models aimed at scientific understanding are too complex for use in applications such as battery management. Computationally simple models are vital for exploitation. This paper proposes a non-linear state-of-charge dependent Li-S equivalent circuit network (ECN) model for a Li-S cell under discharge. Li-S batteries are fundamentally different to Li-ion batteries, and require chemistry-specific models. A new Li-S model is obtained using a ‘behavioural’ interpretation of the ECN model; as Li-S exhibits a ‘steep’ open-circuit voltage (OCV) profile at high states-of-charge, identification methods are designed to take into account OCV changes during current pulses. The prediction-error minimization technique is used. The model is parameterized from laboratory experiments using a mixed-size current pulse profile at four temperatures from 10 °C to 50 °C, giving linearized ECN parameters for a range of states-of-charge, currents and temperatures. These are used to create a nonlinear polynomial-based battery model suitable for use in a battery management system. When the model is used to predict the behaviour of a validation data set representing an automotive NEDC driving cycle, the terminal voltage predictions are judged accurate with a root mean square error of 32 mV

    Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages

    Get PDF
    The evolution of three classes of centromere sequences across nine species of macropodine marsupials were compared with that of other genes, showing that each species has experienced differential expansion and contraction of individual classes

    The Cytokine Release Inhibitory Drug CRID3 Targets ASC Oligomerisation in the NLRP3 and AIM2 Inflammasomes

    Get PDF
    Background: The Inflammasomes are multi-protein complexes that regulate caspase-1 activation and the production of the pro-inflammatory cytokine IL-1 beta. Previous studies identified a class of diarylsulfonylurea containing compounds called Cytokine Release Inhibitory Drugs (CRIDs) that inhibited the post-translational processing of IL-1 beta. Further work identified Glutathione S-Transferase Omega 1 (GSTO1) as a possible target of these CRIDs. This study aimed to investigate the mechanism of the inhibitory activity of the CRID CP-456,773 (termed CRID3) in light of recent advances in the area of inflammasome activation, and to clarify the potential role of GSTO1 in the regulation of IL-1 beta production

    The Stretched Lens Array SquareRigger (SLASR) for Space Power

    Get PDF
    For the past three years, our team has been developing, refining, and maturing a unique solar array technology known as Stretched Lens Array SquareRigger (SLASR). SLASR offers an unprecedented portfolio of state-of-the-art performance metrics, including areal power density, specific power, stowed power density, high-voltage capability, radiation hardness, modularity, scalability, mass-producibility, and cost-effectiveness. SLASR is particularly well suited to high-power space missions, including solar electric propulsion (SEP) space tugs, major exploration missions to the Moon and Mars, and power-intensive military spacecraft. SLASR is also very well suited to high-radiation missions, since the cell shielding mass penalty is 85% less for the SLASR concentrator array than for one-sun planar arrays. The paper describes SLASR technology and presents significant results of developments to date in a number of key areas, from advances in the key components to full-scale array hardware fabrication and evaluation. A summary of SLASR s unprecedented performance metrics, both near-term and longer term, will be presented. Plans for future SLASR developments and near-term space applications will also be outlined

    Stock assessment of the Queensland and New South Wales pearl perch (Glaucosoma scapulare) fishery

    Get PDF
    Pearl perch (Glaucosoma scapulare) are found commonly in sub-tropical offshore-waters along the east coast of Australia and are a valuable table fish popular with commercial and recreational fishers. The species is long-lived, up to 30 years of age, and reaches sexual maturity at between 25 and 35 cm total length. Pearl perch are predominantly line-caught and fishing is managed separately by New South Wales (NSW) and Queensland. Historical fishing data indicate that pearl perch harvests have been consistently higher from Queensland waters with 73% of the total catch landed in Queensland in 2013. Approximately 52% of the Queensland catch is taken by recreational fishers compared with 42% in NSW. In Queensland, the Department of Agriculture and Fisheries (DAF) recently classified the stock status of pearl perch as “transitional depleting” (DAF Stock Status 2015). The status raised concern in both Queensland and NSW as to whether current management arrangements are adequate to protect the sustainability of pearl perch fishery. This stock assessment incorporates data from both jurisdictions and assesses at the whole of stock level; establishes current stock status reference points including biomass and fishing pressure levels for pearl perch; and provides advice on whether additional management measures are required to reduce fishing pressure and rebuild fish stocks

    On the context-dependent scaling of consumer feeding rates

    Get PDF
    The stability of consumer-resource systems can depend on the form of feeding interactions (i.e. functional responses). Size-based models predict interactions - and thus stability - based on consumer-resource size ratios. However, little is known about how interaction contexts (e.g. simple or complex habitats) might alter scaling relationships. Addressing this, we experimentally measured interactions between a large size range of aquatic predators (4-6400 mg over 1347 feeding trials) and an invasive prey that transitions among habitats: from the water column (3D interactions) to simple and complex benthic substrates (2D interactions). Simple and complex substrates mediated successive reductions in capture rates - particularly around the unimodal optimum - and promoted prey population stability in model simulations. Many real consumer-resource systems transition between 2D and 3D interactions, and along complexity gradients. Thus, Context-Dependent Scaling (CDS) of feeding interactions could represent an unrecognised aspect of food webs, and quantifying the extent of CDS might enhance predictive ecology. © 2016 John Wiley & Sons Ltd/CNRS

    Stretched Lens Array (SLA) Photovoltaic Concentrator Hardware Development and Testing

    Get PDF
    Over the past two years, the Stretched Lens Array (SLA) photovoltaic concentrator has evolved, under a NASA contract, from a concept with small component demonstrators to operational array hardware that is ready for space validation testing. A fully-functional four panel SLA solar array has been designed, built and tested. This paper will summarize the focus of the hardware development effort, discuss the results of recent testing conducted under this program and present the expected performance of a full size 7kW array designed to meet the requirements of future space missions

    Stretched Lens Array (SLA) for Collection and Conversion of Infrared Laser Light: 45% Efficiency Demonstrated for Near-Term 800 W/kg Space Power System

    Get PDF
    For the past 2% years, our team has been developing a unique photovoltaic concentrator array for collection and conversion of infrared laser light. This laser-receiving array has evolved from the solar-receiving Stretched Lens Array (SLA). The laser-receiving version of SLA is being developed for space power applications when or where sunlight is not available (e.g., the eternally dark lunar polar craters). The laser-receiving SLA can efficiently collect and convert beamed laser power from orbiting spacecraft or other sources (e.g., solar-powered lasers on the permanently illuminated ridges of lunar polar craters). A dual-use version of SLA can produce power from sunlight during sunlit portions of the mission, and from beamed laser light during dark portions of the mission. SLA minimizes the cost and mass of photovoltaic cells by using gossamer-like Fresnel lenses to capture and focus incoming light (solar or laser) by a factor of 8.5X, thereby providing a cost-effective, ultra-light space power system
    corecore