61 research outputs found

    Gaia Data Release 1: Open cluster astrometry: Performance, limitations, and future prospects

    Get PDF
    Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho-2 positions in 1991.25 as prior information. Aims. We investigate the scientific potential and limitations of the TGAS component by means of the astrometric data for open clusters. Methods. Mean cluster parallax and proper motion values are derived taking into account the error correlations within the astrometric solutions for individual stars, an estimate of the internal velocity dispersion in the cluster, and, where relevant, the effects of the depth of the cluster along the line of sight. Internal consistency of the TGAS data is assessed. Results. Values given for standard uncertainties are still inaccurate and may lead to unrealistic unit-weight standard deviations of least squares solutions for cluster parameters. Reconstructed mean cluster parallax and proper motion values are generally in very good agreement with earlier Hipparcos-based determination, although the Gaia mean parallax for the Pleiades is a significant exception. We have no current explanation for that discrepancy. Most clusters are observed to extend to nearly 15 pc from the cluster centre, and it will be up to future Gaia releases to establish whether those potential cluster-member stars are still dynamically bound to the clusters. Conclusions. The Gaia DR1 provides the means to examine open clusters far beyond their more easily visible cores, and can provide membership assessments based on proper motions and parallaxes. A combined HR diagram shows the same features as observed before using the Hipparcos data, with clearly increased luminosities for older A and F dwarfs

    Gaia Data Release 1: Testing parallaxes with local Cepheids and RR Lyrae stars

    Get PDF
    Context. Parallaxes for 331 classical Cepheids, 31 Type II Cepheids, and 364 RR Lyrae stars in common between Gaia and the Hipparcos and Tycho-2 catalogues are published in Gaia Data Release 1 (DR1) as part of the Tycho-Gaia Astrometric Solution (TGAS). Aims. In order to test these first parallax measurements of the primary standard candles of the cosmological distance ladder, which involve astrometry collected by Gaia during the initial 14 months of science operation, we compared them with literature estimates and derived new period-luminosity (PL), period-Wesenheit (PW) relations for classical and Type II Cepheids and infrared PL, PL-metallicity (PLZ), and optical luminosity-metallicity (M V -[Fe/H]) relations for the RR Lyrae stars, with zero points based on TGAS. Methods. Classical Cepheids were carefully selected in order to discard known or suspected binary systems. The final sample comprises 102 fundamental mode pulsators with periods ranging from 1.68 to 51.66 days (of which 33 with σ Ω /Ω < 0.5). The Type II Cepheids include a total of 26 W Virginis and BL Herculis stars spanning the period range from 1.16 to 30.00 days (of which only 7 with σ Ω /Ω < 0.5). The RR Lyrae stars include 200 sources with pulsation period ranging from 0.27 to 0.80 days (of which 112 with σ Ω /Ω < 0.5). The new relations were computed using multi-band (V,I,J,K s ) photometry and spectroscopic metal abundances available in the literature, and by applying three alternative approaches: (i) linear least-squares fitting of the absolute magnitudes inferred from direct transformation of the TGAS parallaxes; (ii) adopting astrometry-based luminosities; and (iii) using a Bayesian fitting approach. The last two methods work in parallax space where parallaxes are used directly, thus maintaining symmetrical errors and allowing negative parallaxes to be used. The TGAS-based PL,PW,PLZ, and M V - [Fe/H] relations are discussed by comparing the distance to the Large Magellanic Cloud provided by different types of pulsating stars and alternative fitting methods. Results. Good agreement is found from direct comparison of the parallaxes of RR Lyrae stars for which both TGAS and HST measurements are available. Similarly, very good agreement is found between the TGAS values and the parallaxes inferred from the absolute magnitudes of Cepheids and RR Lyrae stars analysed with the Baade-Wesselink method. TGAS values also compare favourably with the parallaxes inferred by theoretical model fitting of the multi-band light curves for two of the three classical Cepheids and one RR Lyrae star, which were analysed with this technique in our samples. The K-band PL relations show the significant improvement of the TGAS parallaxes for Cepheids and RR Lyrae stars with respect to the Hipparcos measurements. This is particularly true for the RR Lyrae stars for which improvement in quality and statistics is impressive. Conclusions. TGAS parallaxes bring a significant added value to the previous Hipparcos estimates. The relations presented in this paper represent the first Gaia-calibrated relations and form a work-in-progress milestone report in the wait for Gaia-only parallaxes of which a first solution will become available with Gaia Data Release 2 (DR2) in 2018.This work has made use of results from the European Space Agency (ESA) space mission Gaia, the data from which were processed by the Gaia Data Processing and Analysis Consortium (DPAC). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. The Gaia mission website is http://www.cosmos.esa.int/gaia. The authors are current or past members of the ESA and Airbus DS Gaia mission teams and of the Gaia DPAC. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. We thank the referee, Pierre Kervella, for his detailed comments and suggestions that have helped to improve the paper analysis and presentation. This work has financially been supported by: the Agenzia Spaziale Italiana (ASI) through grants I/037/08/0, I/058/10/0, 2014-025-R.0, and 2014-025-R.1.2015 to INAF and contracts I/008/10/0 and 2013/030/I.0 to ALTEC S.p.A.; the Algerian Centre de Recherche en Astronomie, Astrophysique et GĂ©ophysique of Bouzareah Observatory; the Austrian FWF Hertha Firnberg Programme through grants T359, P20046, and P23737; the BELgian federal Science Policy Office (BELSPO) through various PROgramme de DĂ©veloppement d’ExpĂ©riences scientifiques (PRODEX) grants; the Brazil-France exchange programmes FAPESP-COFECUB and CAPES-COFECUB; the Chinese National Science Foundation through grant NSFC 11573054; the Czech-Republic Ministry of Education, Youth, and Sports through grant LG 15010; the Danish Ministry of Science; the Estonian Ministry of Education and Research through grant IUT40-1; the European Commission’s Sixth Framework Programme through the European Leadership in Space Astrometry (ELSA) Marie Curie Research Training Network (MRTN-CT-2006-033481), through Marie Curie project PIOF-GA-2009-255267 (SAS-RRL), and through a Marie Curie Transfer-of-Knowledge (ToK) fellowship (MTKD-CT-2004-014188); the European Commission’s Seventh Framework Programme through grant FP7-606740 (FP7-SPACE-2013-1) for the Gaia European Network for Improved data User Services (GENIUS) and through grant 264895 for the Gaia Research for European Astronomy Training (GREAT-ITN) network; the European Research Council (ERC) through grant 320360 and through the European Union’s Horizon 2020 research and innovation programme through grant agreement 670519 (Mixing and Angular Momentum tranSport of massIvE stars – MAMSIE); the European Science Foundation (ESF), in the framework of the Gaia Research for European Astronomy Training Research Network Programme (GREAT-ESF); the European Space Agency in the framework of the Gaia project; the European Space Agency Plan for European Cooperating States (PECS) programme through grants for Slovenia; the Czech Space Office through ESA PECS contract 98058; the Academy of Finland; the Magnus Ehrnrooth Foundation; the French Centre National de la Recherche Scientifique (CNRS) through action “DĂ©fi MASTODONS”; the French Centre National d’Études Spatiales (CNES); the French L’Agence Nationale de la Recherche (ANR) “investissements d’avenir” Initiatives D’EXcellence (IDEX) programme PSL∗ through grant ANR-10-IDEX-0001-02; the RĂ©gion Aquitaine; the UniversitĂ© de Bordeaux; the French Utinam Institute of the UniversitĂ© de Franche-ComtĂ©, supported by the RĂ©gion de Franche-ComtĂ© and the Institut des Sciences de l’Univers (INSU); the German Aerospace Agency (Deutsches Zentrum fĂŒr Luft- und Raumfahrt e.V., DLR) through grants 50QG0501, 50QG0601, 50QG0602, 50QG0701, 50QG0901, 50QG1001, 50QG1101, 50QG140, 50QG1401, 50QG1402, and 50QG1404; the Hungarian Academy of Sciences through LendĂŒlet Programme LP2014-17; the Hungarian National Research, Development, and Innovation Office through grants NKFIH K-115709, K-119517 and PD-116175; the Israel Ministry of Science and Technology through grant 3-9082; the Italian Istituto Nazionale di Astrofisica (INAF); the Netherlands Organisation for Scientific Research (NWO) through grant NWO-M-614.061.414 and through a VICI grant to A. Helmi; the Netherlands Research School forAstronomy (NOVA); the Polish National Science Centre through HARMONIA grant 2015/18/M/ST9/00544; the Portugese Fundação para a CiĂȘncia e a Tecnologia (FCT) through grants PTDC/CTE-SPA/118692/2010, PDCTE/CTE-AST/81711/2003, and SFRH/BPD/74697/2010; the Strategic Programmes PEst-OE/AMB/UI4006/2011 for SIM, UID/FIS/00099/2013 for CENTRA, and UID/EEA/00066/2013 for UNINOVA; the Slovenian Research Agency; the Spanish Ministry of Economy MINECO-FEDER through grants AyA2014-55216, AyA2011-24052, ESP2013-48318-C2-R, and ESP2014-55996-C2-R and MDM-2014-0369 of ICCUB (Unidad de Excelencia MarĂ­a de Maeztu); the Swedish National Space Board (SNSB/Rymdstyrelsen); the Swiss State Secretariat for Education, Research, and Innovation through the ESA PRODEX programme; the Swiss Mesures d’Accompagnement; the Swiss ActivitĂ©s Nationales ComplĂ©mentaires; the Swiss National Science Foundation, including an Early Postdoc.Mobility fellowship; the United Kingdom Rutherford Appleton Laboratory; the United Kingdom Science and Technology Facilities Council (STFC) through grants PP/C506756/1 and ST/I00047X/1; and the United Kingdom Space Agency (UKSA) through grants ST/K000578/1 and ST/N000978/1

    Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way

    Get PDF
    AIMS: The goal of this paper is to demonstrate the outstanding quality of the second data release of the Gaia mission and its power for constraining many different aspects of the dynamics of the satellites of the Milky Way. We focus here on determining the proper motions of 75 Galactic globular clusters, nine dwarf spheroidal galaxies, one ultra-faint system, and the Large and Small Magellanic Clouds. METHODS: Using data extracted from the Gaia archive, we derived the proper motions and parallaxes for these systems, as well as their uncertainties. We demonstrate that the errors, statistical and systematic, are relatively well understood. We integrated the orbits of these objects in three different Galactic potentials, and characterised their properties. We present the derived proper motions, space velocities, and characteristic orbital parameters in various tables to facilitate their use by the astronomical community. RESULTS: Our limited and straightforward analyses have allowed us for example to (i) determine absolute and very precise proper motions for globular clusters; (ii) detect clear rotation signatures in the proper motions of at least five globular clusters; (iii) show that the satellites of the Milky Way are all on high-inclination orbits, but that they do not share a single plane of motion; (iv) derive a lower limit for the mass of the Milky Way of 9.1{_₂.₆âș⁶·ÂČ} x 10ÂčÂč M⊙ based on the assumption that the Leo I dwarf spheroidal is bound; (v) derive a rotation curve for the Large Magellanic Cloud based solely on proper motions that is competitive with line-of-sight velocity curves, now using many orders of magnitude more sources; and (vi) unveil the dynamical effect of the bar on the motions of stars in the Large Magellanic Cloud. CONCLUSIONS: All these results highlight the incredible power of the Gaia astrometric mission, and in particular of its second data release

    Gaia Data Release 2 Variable stars in the colour-absolute magnitude diagram

    Get PDF
    Context. The ESA Gaia mission provides a unique time-domain survey for more than 1.6 billion sources with G â‰Č 21 mag. Aims. We showcase stellar variability in the Galactic colour-absolute magnitude diagram (CaMD). We focus on pulsating, eruptive, and cataclysmic variables, as well as on stars that exhibit variability that is due to rotation and eclipses. Methods. We describe the locations of variable star classes, variable object fractions, and typical variability amplitudes throughout the CaMD and show how variability-related changes in colour and brightness induce “motions”. To do this, we use 22 months of calibrated photometric, spectro-photometric, and astrometric Gaia data of stars with a significant parallax. To ensure that a large variety of variable star classes populate the CaMD, we crossmatched Gaia sources with known variable stars. We also used the statistics and variability detection modules of the Gaia variability pipeline. Corrections for interstellar extinction are not implemented in this article. Results. Gaia enables the first investigation of Galactic variable star populations in the CaMD on a similar, if not larger, scale as was previously done in the Magellanic Clouds. Although the observed colours are not corrected for reddening, distinct regions are visible in which variable stars occur. We determine variable star fractions to within the current detection thresholds of Gaia. Finally, we report the most complete description of variability-induced motion within the CaMD to date. Conclusions. Gaia enables novel insights into variability phenomena for an unprecedented number of stars, which will benefit the understanding of stellar astrophysics. The CaMD of Galactic variable stars provides crucial information on physical origins of variability in a way that has previously only been accessible for Galactic star clusters or external galaxies. Future Gaia data releases will enable significant improvements over this preview by providing longer time series, more accurate astrometry, and additional data types (time series BP and RP spectra, RVS spectra, and radial velocities), all for much larger samples of stars

    Comparison between observed and theoretical O IV line ratios in the UV/EUV solar spectrum as derived by SUMER, CDS and EIS

    No full text
    The joint use of SoHO Solar Ultraviolet Measurement of Emitted Radiation (SUMER), Coronal Diagnostic Spectrometer (CDS) and Hinode Extreme-ultraviolet Imaging Spectrometer (EIS) allow observation of several O iv line ratios, useful for temperature plasma diagnostics. Accurate atomic data are required to avoid interpretation errors in deriving the electron temperature from these ratios. Muglach et al. (2010) found that the measured ratio I(787.72 Å)/I(279.93 Å) is lower than the predicted value by a factor 2–5. Here the predicted value for this ratio is revised using updated atomic data. A comparison with other observed O iv line ratios is shown and the electron temperature is derived. The analysis is based on new observations made during the observational campaign of April 2009 and including three O iv multiplets. The theoretical ratios have been derived using the Atomic Data and Analysis Structure (ADAS) database and include comparison with the most recent calculations available in the literature. The discrepancy for the O iv I(787.72 Å)/I(279.93 Å) ratio has been solved by adding transitions involving higher excited levels, which have been omitted in previous atomic models. This results in a decrease of the theoretical line ratio, providing electron temperatures in the range of log T = 5.17–5.39, close to the temperature expected from a plasma in ionisation equilibrium

    Dielectronic recombination of lanthanide and low ionization state tungsten ions: W-1(3+)-W1+

    Get PDF
    The experimental thermonuclear reactor, ITER, is currently being constructed in Cadarache, France. The reactor vessel will be constructed with a beryllium coated wall, and a tungsten coated divertor. As a plasma-facing component, the divertor will be under conditions of extreme temperature, resulting in the sputtering of tungsten impurities into the main body plasma. Modelling and understanding the potential cooling effects of these impurities requires detailed collisional-radiative modelling. These models require a wealth of atomic data for the various atomic species in the plasma. In particular, partial, final-state resolved dielectronic/radiative recombination (DR/RR) rate coefficients for tungsten are required. In this manuscript, we present our calculations of detailed DR/RR rate coefficients for the lanthanide-like, and low ionization stages of tungsten, spanning charge states W13+–W1+. The calculations presented here constitutes the first detailed exploration of such low ionization state tungsten ions. We are able to reproduce the general trend of calculations performed by other authors, but find significant differences between ours and their DR rate coefficients, especially at the lowest temperatures considered

    Electron and neutral interactions with impurities in divertor plasmas

    No full text
    With the current focus on the characteristics and effective operation of divertor configurations in fusion plasma research, a reassessment of the atomic database available for divertor modeling and diagnosis is taking place. The quest for ideal materials for divertor targets and for impurities that can be used to promote optimum working conditions has exposed some gaps in the database. In addition, for the finer spectroscopic diagnostic and modeling tools now being promoted, existing data may be organized inappropriately or may be at unsuitable precisions. In this paper, some examples that emphasize electron collisions and collisions with neutrals, are used to demonstrate these points. Then, a case study is presented, based on experience at SET Joint Undertaking, of tailoring atomic data and their manipulation for experiment support.</p
    • 

    corecore