2,304 research outputs found
Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents
During dynamic exercise, mechanisms controlling the cardiovascular apparatus operate to provide adequate oxygen to fulfill metabolic demand of exercising muscles and to guarantee metabolic end-products washout. Moreover, arterial blood pressure is regulated to maintain adequate perfusion of the vital organs without excessive pressure variations. The autonomic nervous system adjustments are characterized by a parasympathetic withdrawal and a sympathetic activation. In this review, we briefly summarize neural reflexes operating during dynamic exercise. The main focus of the present review will be on the central command, the arterial baroreflex and chemoreflex, and the exercise pressure reflex. The regulation and integration of these reflexes operating during dynamic exercise and their possible role in the pathophysiology of some cardiovascular diseases are also discusse
Real-time assembly of ribonucleoprotein complexes on nascent RNA transcripts.
Cellular protein-RNA complexes assemble on nascent transcripts, but methods to observe transcription and protein binding in real time and at physiological concentrations are not available. Here, we report a single-molecule approach based on zero-mode waveguides that simultaneously tracks transcription progress and the binding of ribosomal protein S15 to nascent RNA transcripts during early ribosome biogenesis. We observe stable binding of S15 to single RNAs immediately after transcription for the majority of the transcripts at 35 °C but for less than half at 20 °C. The remaining transcripts exhibit either rapid and transient binding or are unable to bind S15, likely due to RNA misfolding. Our work establishes the foundation for studying transcription and its coupled co-transcriptional processes, including RNA folding, ligand binding, and enzymatic activity such as in coupling of transcription to splicing, ribosome assembly or translation
Artificial Reefs Feasibility Study
The Marine Institute commissioned this study to review the current status of artificial reefs world-wide with a view to determining the feasibility of the development of a sea angling initiative based on the deployment and exploitation of artificial reefs. The study, conducted by the Coastal Resources Centre, National University of Ireland, Cork, includes a review of the current status of artificial reefs globally with a focus on site selection, reef design, construction material and reef use. The Beara Tourism Development Association has expressed an interest in developing a sustainable sea angling initiative based on the construction of a series of artificial reef sites. In response to this interest, the Beara Peninsula was used as a case study area for the purpose of determining feasible artificial reef site locations. Consultations with relevant regulatory bodies, local tourism development groups and the sea angling sector in the Beara Peninsula were an essential element of this study.
The use and benefits of artificial reefs have been widely accepted with both ongoing research and national development programmes in place in over forty countries worldwide. In Japan for example, national programmes have been in operation for over twenty years. The Japanese have been at the forefront of reef design, construction and deployment since their inception. However, little research has ever been undertaken on artificial reefs in Ireland, to date one application for the creation of an artificial reef has been submitted to the Department of the Marine & Natural Resources.Funder: Marine Institut
Recommended from our members
Causes and consequences of representational drift.
The nervous system learns new associations while maintaining memories over long periods, exhibiting a balance between flexibility and stability. Recent experiments reveal that neuronal representations of learned sensorimotor tasks continually change over days and weeks, even after animals have achieved expert behavioral performance. How is learned information stored to allow consistent behavior despite ongoing changes in neuronal activity? What functions could ongoing reconfiguration serve? We highlight recent experimental evidence for such representational drift in sensorimotor systems, and discuss how this fits into a framework of distributed population codes. We identify recent theoretical work that suggests computational roles for drift and argue that the recurrent and distributed nature of sensorimotor representations permits drift while limiting disruptive effects. We propose that representational drift may create error signals between interconnected brain regions that can be used to keep neural codes consistent in the presence of continual change. These concepts suggest experimental and theoretical approaches to studying both learning and maintenance of distributed and adaptive population codes.This work is supported by the Human Frontier Science Program, ERC grant StG 716643 FLEXNEURO, and NIH grants (NS108410, NS089521, MH107620)
Validating Expert Systems: A Demonstration Using Personal Choice Expert, a Flexible Employee Benefit System
A method for validating expert systems, based on validation approaches from psychology and Turing\u27s “imitation game,” is demonstrated using a flexible employee benefits expert system. Psychometric validation has three aspects: the extent to which the system and expert decisions agree (criterionrelated validity), the inputs and processes used by experts compared to the system (content validity), and differences between expert and novice decisions (construct validity). If these criteria are satisfied, then the system is indistinguishable from experts for its domain and satisfies the Turing Test.
Personal Choice Expert (PCE) was designed to help employees of a Fortune 500 firm choose benefits in their flexible benefits system. Its recommendations do not significantly differ from those given by independent experts. Hence, if the system-independent expert agreement (criterion-related validity) were the only standard, PCE could be considered valid. However, construct analysis suggests that re-engineering may be required. High intra-expert agreement exists only for some benefit recommendations (e.g., dental care and long-term disability) and not for others (e.g., short-term disability, accidental death and dismemberment, and life insurance). Insights offered by these methods are illustrated and examined
Nuclear alpha-clustering, superdeformation, and molecular resonances
Nuclear alpha-clustering has been the subject of intense study since the
advent of heavy-ion accelerators. Looking back for more than 40 years we are
able today to see the connection between quasimolecular resonances in heavy-ion
collisions and extremely deformed states in light nuclei. For example
superdeformed bands have been recently discovered in light N=Z nuclei such as
Ar, Ca, Cr, and Ni by -ray spectroscopy.
The search for strongly deformed shapes in N=Z nuclei is also the domain of
charged-particle spectroscopy, and our experimental group at IReS Strasbourg
has studied a number of these nuclei with the charged particle multidetector
array {\sc Icare} at the {\sc Vivitron} Tandem facility in a systematical
manner. Recently the search for -decays in Mg has been
undertaken in a range of excitation energies where previously nuclear molecular
resonances were found in C+C collisions. The breakup reaction
MgC has been investigated at E(Mg) = 130 MeV, an
energy which corresponds to the appropriate excitation energy in Mg for
which the C+C resonance could be related to the breakup
resonance. Very exclusive data were collected with the Binary Reaction
Spectrometer in coincidence with {\sc Euroball IV} installed at the {\sc
Vivitron}.Comment: 10 pages, 4 eps figures included. Invited Talk 10th Nuclear Physics
Workshop Marie and Pierre Curie, Kazimierz Dolny Poland, Sep. 24-28, 2003; To
be published in International Journal of Modern Physics
Induction and repression of the sty operon in Pseudomonas putida CA-3 during growth on phenylacetic acid under organic and inorganic nutrient-limiting continuous culture conditions
The effects of various nutrient-limiting conditions on expression of the sty operon in Pseudomonas putida CA-3 were investigated. It was observed that limiting concentrations of the carbon source phenylacetic acid, resulted in high levels of phenylacetyl coenzyme A (CoA) ligase activity, this was accompanied also by upper pathway styrene monooxygenase enzyme activity. The introduction of inorganic nutrient limitations, (nitrate, sulfate and phosphate), caused a dramatic reduction in detectable levels of phenylacetyl CoA ligase activity, particularly in the presence of the primary carbon source, succinate. Under these conditions it was no longer possible to detect styrene monooxygenase activity. Reverse transcription PCR analysis of total RNA, isolated under each of the continuous culture conditions examined, revealed that variations in the levels of enzyme activity coincided with altered patterns of corresponding paaK (phenylacetyl CoA ligase) and styA (styrene monooxygenase) gene expression. Transcription of the upper pathway regulatory sensor kinase gene styS was also observed to be growth condition-dependent. These observations suggest that induction/repression of the sty operon in P. putida CA-3, during growth on phenylacetic acid under continuous culture conditions, involves regulatory mechanisms coordinately affecting both the upper and lower pathways and acting at the level of gene transcriptio
Shot-noise-limited spin measurements in a pulsed molecular beam
Heavy diatomic molecules have been identified as good candidates for use in
electron electric dipole moment (eEDM) searches. Suitable molecular species can
be produced in pulsed beams, but with a total flux and/or temporal evolution
that varies significantly from pulse to pulse. These variations can degrade the
experimental sensitivity to changes in spin precession phase of an electri-
cally polarized state, which is the observable of interest for an eEDM
measurement. We present two methods for measurement of the phase that provide
immunity to beam temporal variations, and make it possible to reach
shot-noise-limited sensitivity. Each method employs rapid projection of the
spin state onto both components of an orthonormal basis. We demonstrate both
methods using the eEDM-sensitive H state of thorium monoxide (ThO), and use one
of them to measure the magnetic moment of this state with increased accuracy
relative to previous determinations.Comment: 12 pages, 6 figure
- …