7 research outputs found

    Endogenous antioxidant and LOX-mediated systems contribute to the hepatoprotective activity of aqueous partition of methanol extract of Muntingia calabura L. leaves against paracetamol intoxication =

    Get PDF
    Methanol extract of Muntingia calabura L. (family Muntingiaceae) leaf has been reported to exert various pharmacological activities including hepatoprotection. The present study was carried out to identify the most effective hepatoprotective partition derived from the extract and to determine the mechanisms of action involved. The extract was partitioned using solvents with different polarity to yield petroleum ether (PEMC), ethyl acetate (EAMC), and aqueous (AQMC) extracts. Each extract, at 250 mg/kg, was subjected to the paracetamol (PCM)-induced hepatotoxic assay and several parameters such as liver weight, liver/body weight ratio, serum liver enzymes' level, and histopathological examinations were determined. Each partition was also tested for their antioxidant and anti-inflammatory potentials. The most effective extract (AQMC) was prepared in additional dose of 50 and 500 mg/kg, and then subjected to the same liver toxicity test in addition to the endogenous antioxidant enzymes assay. Moreover, AQMC was also subjected to the phytochemical screening and HPLC analysis. Overall, from the results obtained: AQMC exerted significant (p < 0.05): (i) antioxidant activity when assessed using the DPPH, SOD and ORAC assays with high TPC detected; (ii) anti-inflammatory activity via LOX, but not XO pathway; (iii) hepatoprotective activity indicated by its ability to reverse the effect of PCM on the liver weight and liver/body weight ratio, the level of serum liver enzymes (ALT, AST, and ALP), and activity of several endogenous antioxidant enzymes (SOD and CAT). Phytochemicals analyses demonstrated the presence of several flavonoid-based bioactive compounds such as gallic acid and quercetin, which were reported to possess hepatoprotective activity. In conclusion, AQMC exerts hepatoprotective activity against the PCM-induced toxicity possibly by having a remarkable antioxidant potential and ability to activate the endogenous antioxidant system possibly via the synergistic action of its phytoconstituents

    Floriculture Industry: Multifunction Leaves Stem Cutting Machine for Small Medium-sized Enterprises

    Get PDF
    The floriculture industry plays a crucial role in the global economy by providing not only aesthetic value but also contributing significantly to agricultural employment and the export market. However, the efficiency and sustainability of SMEs in floriculture are often hindered by labourintensive practices, especially in the propagation of plants through stem cutting. This novel multifunction leaves stem cutting machine designed specifically to cater to the needs of SMEs in the floriculture sector. This machine serves the function to separate the flowers and leaves for selling purposes. It has gained lots of interest specifically in the flower-related field, florist businesses, and leaves extraction processes due to its convenient applications in separating the leaves from the flowers. However, readily available machines such as rose cutting machine are lack in it functions where it only operates only one function. The deficiency of the current product may cause serious injury to employees because the existing machine does not have good safety features that can avoid the workers being injured while carrying out the work. The objective of this study is to design, fabricate and test the functionality of the new system and ergonomic multifunction leaves stem cutting machine. The design was created by using Fusion 360 with the main part separating leaves, cutting the stem, washing part, and system part. All the processes will be carried out on the machine that have safety features that will not harm the user. The machine demonstrated exceptional performance including consistency of the machine that will benefits the SMEs with high productivity and lower production cost

    Gastroprotective activity of chloroform extract of Muntingia calabura and Melastoma malabathricum leaves

    Get PDF
    Context: Muntingia calabura L. (family Muntingiaceae) and Melastoma malabathricum L. (family Melastomaceae) are traditionally used to treat gastric ulcer. Objective: The present study determines the mechanisms of gastroprotective activity of the chloroform extract of leaves obtained from both the plants using several in vitro and in vivo assays. Materials and methods: Phytochemical screening, HPLC analysis, and antioxidant activity of the respective extract were carried out. Gastroprotective activity was determined using ethanol-induced gastric ulcer assay while the mechanisms of gastroprotection were determined using the pyloric ligation assay. The test solutions [8% Tween-80 (vehicle), 20 mg/kg omeprazole, and different doses of extracts (50, 250, or 500 mg/kg] were administered orally once daily for 7 consecutive days before the animals were subjected to ethanol induced gastric ulcers. Results: The chloroform-extracted M. calabura (CEMC) contains tannins, polyphenolics, triterpenes, and steroids while the chloroform-extracted M. malabathricum (CEMM) contains only triterpenes and steroids. CEMC, but not CEMM, exerted remarkably strong antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH)- (86% versus 16%) and superoxide- (73% versus 36%) radical scavenging assays. Both extracts demonstrated significant (p < 0.05) gastroprotection with the EC50 value recorded at 192.3 or 297.7 mg/kg, respectively. In the pylorus ligation assay, CEMC and CEMM significantly (p < 0.05) reduced the total and free acidity and volume; while increased the pH of gastric juice as well as the gastric wall mucus content in comparison with the vehicle-treated group. Discussion and conclusion: CEMC and CEMM exert gastroprotective effects in animals with ethanol-induced gastric ulcers via antioxidant and anti-secretory effects

    Aqueous partition of methanolic extract of Dicranopteris linearis leaves protects against liver damage induced by paracetamol

    No full text
    This study aimed to determine the antioxidant and hepatoprotective activities of semi-purified aqueous partition obtained from the methanol extract of Dicranopteris linearis (AQDL) leaves against paracetamol (PCM)-induced liver intoxication in rats. The test solutions, AQDL (50, 250, and 500 mg/kg), were administered orally to rats (n = 6) once daily for seven consecutive days followed by the hepatotoxicity induction using 3 g/kg PCM (p.o.). Blood was collected for serum biochemical parameters analysis while the liver was collected for histopathological examination and endogenous antioxidant enzymes analysis. AQDL was also subjected to antioxidant determination and phytochemical analysis. Results obtained show that AQDL possessed high total phenolic content (TPC) value and remarkable radical scavenging activities. AQDL also significantly (p < 0.05) reduced the liver weight/body weight (LW/BW) ratio or serum level of ALT, AST, and total bilirubin while significantly (p < 0.05) increase the level of superoxide dismutase (SOD) and catalase (CAT) without affecting the malondialdehyde (MDA) in the liver indicating its hepatoprotective effect. Phytoconstituents analyses showed only the presence of saponins and triterpenes, but lack of flavonoids. In conclusion, AQDL exerts hepatoprotective activity via its high antioxidant potential and ability to modulate the endogenous enzymatic antioxidant defense system possibly via the synergistic action of saponins and triterpenes
    corecore