194 research outputs found

    Parameters for a Super-Flavor-Factory

    Get PDF
    A Super Flavor Factory, an asymmetric energy e+e- collider with a luminosity of order 10^36 cm-2s-1, can provide a sensitive probe of new physics in the flavor sector of the Standard Model. The success of the PEP-II and KEKB asymmetric colliders in producing unprecedented luminosity above 10^34 cm-2s-1 has taught us about the accelerator physics of asymmetric e+e- colliders in a new parameter regime. Furthermore, the success of the SLAC Linear Collider and the subsequent work on the International Linear Collider allow a new Super-Flavor collider to also incorporate linear collider techniques. This note describes the parameters of an asymmetric Flavor-Factory collider at a luminosity of order 10^36 cm-2s-1 at the Upsilon(4S) resonance and about 10^35 cm-2s-1 at the Tau production threshold. Such a collider would produce an integrated luminosity of about 10,000 fb-1 (10 ab-1) in a running year (10^7 sec) at the Upsilon(4S) resonance.Comment: Flavor Physics & CP Violation Conference, Vancouver, 200

    Impedance of a Rectangular Beam Tube with Small Corrugations

    Get PDF
    We consider the impedance of a structure with rectangular, periodic corrugations on two opposing sides of a rectangular beam tube. Using the method of field matching, we find the modes in such a structure. We then limit ourselves to the the case of small corrugations, but where the depth of corrugation is not small compared to the period. For such a structure we generate analytical approximate solutions for the wave number kk, group velocity vgv_g, and loss factor κ\kappa for the lowest (the dominant) mode which, when compared with the results of the complete numerical solution, agreed well. We find: if waw\sim a, where ww is the beam pipe width and aa is the beam pipe half-height, then one mode dominates the impedance, with k1/wδk\sim1/\sqrt{w\delta} (δ\delta is the depth of corrugation), (1vg/c)δ(1-v_g/c)\sim\delta, and κ1/(aw)\kappa\sim1/(aw), which (when replacing ww by aa) is the same scaling as was found for small corrugations in a {\it round} beam pipe. Our results disagree in an important way with a recent paper of Mostacci {\it et al.} [A. Mostacci {\it et al.}, Phys. Rev. ST-AB, {\bf 5}, 044401 (2002)], where, for the rectangular structure, the authors obtained a synchronous mode with the same frequency kk, but with κδ\kappa\sim\delta. Finally, we find that if ww is large compared to aa then many nearby modes contribute to the impedance, resulting in a wakefield that Landau damps.Comment: 18 pages, 6 figures, 1 bibliography fil

    Use of a corrugated beam pipe as a passive deflector for bunch length measurements

    Get PDF
    We report the experimental demonstration of bunch length measurements using a corrugated metallic beam pipe as a passive deflector. The corrugated beam pipe has been adopted for reducing longitudinal chirping after the bunch compressors in several XFEL facilities worldwide. In the meantime, there have been attempts to measure the electron bunch's longitudinal current profile using the dipole wakefields generated in the corrugated pipe. Nevertheless, the bunch shape reconstructed from the nonlinearly deflected beam suffers from significant distortion, particularly near the head of the bunch. In this paper, we introduce an iterative process to improve the resolution of the bunch shape reconstruction. The ASTRA and ELEGANT simulations have been performed for pencil beam and cigar beam cases, in order to verify the effectiveness of the reconstruction process. To overcome the undesirable effects of transverse beam spreads, a measurement scheme involving both the corrugated beam pipe and the spectrometer magnet has been employed, both of which do not require a dedicated (and likely very expensive) rf system. A proof-of-principle experiment was carried out at Pohang Accelerator Laboratory (PAL) Injector Test Facility (ITF), and its results are discussed together with a comparison with the rf deflector measurement
    corecore