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Abstract

Detection of the field induced by a beam outside of the beam pipe can be used

for the beam diagnostics. A wire in a longitudinal slot in the beam pipe wall

can be used as a beam position monitor with a very small coupling impedance

avoiding complications of the feed-through. The signal can be reasonably high at low

frequencies. We calculate the beam-coupling impedance due to a long longitudinal

slot and the signal induced in a wire placed in such a slot and shielded by a thin

screen from the beam. Results can be relevant for impedance calculations of the

slot to ante-chamber and slots of the DIPs.

PACS numbers: 29.27.Bd, 29-20-Dh, 41-60, 52-59-f

1 Introduction

The electro-magnetic (EM) field induced by a beam outside of a thin beam pipe may be
quite noticeable. The analytical solution for electromagnetic fields in a round beam pipe
can be find elsewhere [1]. Fig. (1) shows the time profile of the field induced by a bunch
on the inner side (pancake thin red line) and on the outer side (blue line) of a stainless
steel tube. The bunch length is 10 mm, the tube radius is 5 mm, the wall thickness is
0.1 mm. It can be seen that the field amplitude outside of the pipe decreases only by 100
times.
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Figure 1: Field on the inner (ed line) and outer (blue line) sides of a beam pipe.

Another example is given in Fig. (2) for an aluminum chamber of radius 2.5 mm with
a tube thickness of 0.5 mm (parameters of the LCLS [2], round chamber). The signal
outside the pipe in this case may reach amplitude of 35 V/m for 1 nC bunch.

In both examples, the main contribution to the signal is given by the low frequencies
modes which can penetrate through the wall. Such frequencies for short bunches are
much lower than the width of the bunch spectrum. Therefore, the signal is practically
independent on the bunch length what simplifies design of the BPM electronics. Another
common feature of both results is the time delay between the signals on the inner and
outer sides defined by the diffusion time of the magnetic field through the wall (about 3
ns in Fig. (1) and 200 ns in in Fig. (2)).

The field of a bunch outside of the beam pipe can be detected and used to build a
a beam position monitor (BPM) without any feed-through preserving the smooth beam
pipe wall seen by the beam. An idea of a BPM based on detection of the EM field behind
a thin foil was suggested long ago [3]. Based on this approach, a low impedance BPM was
proposed and tested by one of the authors (A.A.) for the VEPP-5 collider, a B-factory
project considered to be built in Novosibirsk [4]. To prove feasibility of the approach an
experimental model was built as shown in Fig. (3). The experimental signal measured
outside of the beam pipe with the 15 mm inner radius [4] is shown in Figure (4). At
that time, the full solution for EM fields was not obtained but simple estimates were
used to derive the signal amplitude and duration. Dipole mode of the beam EM field was
simulated by a short pulse propagating in a two wire transmission line. The transmission
line was inserted into an aluminum pipe with central part of the pipe replaced with a
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Figure 2: Field outside of the Al 0.5 mm round beam pipe.

50 µm thick stainless steel foil. Magnetic field penetrating through the foil was measured
using 12 turns coil with 2×2 cm cross-section. Oscilloscope snapshot of the current pulse
in the transmission line and the signal measured by the coil are shown in Fig.(4) (a) and
(b), respectively [4]. Measured signal amplitude and duration were in good agreement
with expected values.

Such kind of a BPM may be used in free-electron lasers like LCLS where the wall
thickness can be as small as 0.5 mm [2]. In general, a BPM can be made as a loop of wire
set into a thin longitudinal groove (or several grooves) in the outer side of the beam-pipe
wall, see Fig. (5). For simplicity, we consider a round beam pipe denoting the inner radius
a, the thickness of a screen ∆, and the wall conductivity σw.

2 EM fields in a beam pipe with a slot

Let us start calculations of the EM fields in a pipe with a slot from the Maxwell equations
for a particle moving in a round beam pipe along the z axes with the offset r0 and
velocity v. Assuming dependence on time in the form e−iωt, equations for the ω-frequency
components of EM fields generated by the particle are

∇× E =
iω

c
B, ∇× B =

4π

c
(jb + σE) − iω

c
E, (1)

where σ is the wall conductivity considered as a constant over ω, ρb is the particle
density, and jb is the current. The second equation can be written introducing D = εE

3



Figure 3: Schematic view of the experimental set-up and electrical diagram of the trans-
mission line. 1- aluminum pipe, 2 - 50um stainless steel foil, 3 - Plexiglas foil support, 7
- measuring coil, 10 - two wire transmission line.

in the form

∇× B =
4π

c
jb − iω

c
D,

ε = 1 + i
4πσ

ω
. (2)

The first of Eqs. (1) gives divB = 0, and from Eq. (2) and the continuity equation

−iωρb + divjb = 0, (3)

it follows that divD = 4πρb.
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Figure 4: (a) Left pane: the signal from the transmission line terminating resistors,
5ns/div horizontal scale, and 20V/div vertical scale. (b) Right pane: the signal from the
measuring coil, 50 ns/div horizontal scale, and 20 mV/div vertical scale.

Figure 5: Sketch of the BPM design.

In cylindrical coordinates with the polar axes along the beam pipe axes, the current
jb = ẑvρb, and

ρb =
e

vr
δ(r − r0) δ(φ) eiωz/v. (4)

The wave equation follows from ∇×∇×B = ∇(∇.B)−4B and Maxwell equations.

5



In the regions of a constant ε,

4B + (
ω

c
)2 εB = −4π

c
∇× jb,

(∇× jb)r =
v

r
(
∂ρ

∂φ
), (∇× jb)φ = −v(

∂ρ

∂r
), (∇× jb)z = 0. (5)

At the boundaries, where ε changes its value, tangential components of E and B have
to be continuous. Then the normal components of D and B are continuous automatically.

Let us expand B(r, φ, z) over the azimuthal harmonics and assume dependence on z
in the form eiωz/v,

B(r, φ, z) = eiωz/v
∞
∑

m=−∞

[r̂Br
m(r) + φ̂Bφ

m(r) + ẑBz
m(r)] eimφ, (6)

where r̂(φ), φ̂(φ) and ẑ are unit vectors. Eq. (5) written for the components B±
m(r) =

Br
m ± iBφ

m and Bz
m takes the form

[
1

r

∂

∂r
r(

∂

∂r
) − (

m ± 1

r
)2 − (

ω

v
)2(1 − v2

c2
ε)]B±

m(r) = −4πiv

c
(
mρm(r)

r
∓ ∂ρm(r)

∂r
),

[
1

r

∂

∂r
r(

∂

∂r
) − (

m

r
)2 − (

ω

v
)2(1 − v2

c2
ε)]Bz

m(r) = 0. (7)

where

ρm(r) =
e

2πvr
δ(r − r0). (8)

Inside of the beam pipe, ε = 1. In the ultra-relativistic case, Eq. (7) are simplified to

[
1

r

∂

∂r
r(

∂

∂r
) − (

m ± 1

r
)2]B±

m(r) = −4πi (
mρm(r)

r
∓ ∂ρm(r)

∂r
),

[
1

r

∂

∂r
r(

∂

∂r
) − (

m

r
)2]Bz

m(r) = 0. (9)

where k = ω/c.
In the region r < r0 solution does not contain the singular term ar r → 0 and has to

be matched with the solution in the region r0 < r < a. Conditions for matching at r = r0

are defined by the right-hand-side (RHS) of Eq. (9),

B±,>
m (r0) − B±,<

m (r0) = ± ieZ0

2πr0

, [
∂B±,>

m (r)

∂r
− ∂B±,<

m (r

∂r
]r=r0

= − ieZ0(m ± 1)

2πr2
0

. (10)
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Here Z0 = 4π/c = 120π Ohm.
The fields at r < r0 are:

B+,<
m (r) = c+

m (
r

r0

)m+1,

B−,<
m (r) = (

ieZ0

2πr0

+ c−m) (
r

r0

)m−1,

Bz,<
m (r) = i

m + 1

kr0

c+
m (

r

r0

)m. (11)

Er,<
m (r) = − i

2k2r2
0

(
r

r0

)m−1 {c+
m (2m + 2m2 + k2r2) − c−m k2r2

0 − ieZ0k
2r0},

Eφ,<
m (r) =

1

2k2r2
0

(
r

r0

)m−1 {c+
m (2m + 2m2 − k2r2) − c−m k2r2

0 − ieZ0k
2r0},

Ez,<
m (r) =

m + 1

kr0

(
r

r0

)mc+
m. (12)

The fields at r0 < r < a are:

B+,>
m (r) = c+

m (
r

r0

)m+1 +
iZ0

2πr0

(
r0

r
)m+1,

B−,>
m (r) = c−m (

r

r0

)m−1,

Bz,>
m (r) = i

m + 1

kr0

c+
m (

r

r0

)m. (13)

Er,>
m (r) =

i

2k2rr0

{−c+
m (2m + 2m2 + k2r2) (

r

r0

)m + k2r2
0 (c−m (

r

r0

)m − ieZ0

2πr0

(
r0

r
)m)},

Eφ,>
m (r) =

1

2k2rr0

{c+
m (2m + 2m2 − k2r2) (

r

r0

)m − k2r2
0 (c−m (

r

r0

)m +
ieZ0

2πr0

(
r0

r
)m)},

Ez,>
m (r) =

m + 1

kr0

(
r

r0

)m c+
m. (14)

Inside of the beam-pipe wall, r > a, Eq. (7) in the ultra-relativistic case takes the
form

[
1

r

∂

∂r
r(

∂

∂r
) − (

m ± 1

r
)2 + k2

w]B±
m(r) = R±

m(r). (15)

Here k2
w = (ω

c
)2 (ε − 1),
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k2
w = i

4πσ

ω
(
ω

c
)2, kw =

1 + i

δω

, (16)

where δω = c/
√

2πσω is the skin depth.
The RHS R±

m(r) is equal to zero in the metal. In the slots, r > a + ∆, |φ| < α/2, the
RHS is

R±,z
m (r) = k2

w

∑

n

∫ α/2

−α/2

dφ

2π
B±,z

n (r)ei(n−m)φ

=
αk2

w

2π

∞
∑

n=−∞

s(n − m)B±,z
n (r) (17)

where α is the angular slot width, and

s(n − m) =
sin[(n − m)α/2]

(n − m)α/2
. (18)

Solution of the homogeneous Eq. (15) at r > a is given in terms of the Bessel functions

B0,±
m (r) = α±

mH
(1)
m±1(kwr) + β±

mH
(2)
m±1(kwr),

B0,z
m (r) = − ikw

2k
(α+

m − α−
m)H(1)

m (kwr) − ikw

2k
(β+

m − β−
m)H(2)

m (kwr). (19)

This solution is valid in the metal for a < r < a+∆, and the tangential components of
the fields B and E = (i/kε)∇×B has to be matched with the solution inside of the beam
pipe at the beam-pipe radius r = a. For frequencies for which the skin depth δω << a,
we can use the asymptotic of the Bessel functions,

B0,±
m (r) =

√

2

πkwr
{α±

m ei[kwr−π

2
(m±1)−π

4
] + β±

m e−i[kwr−π

2
(m±1)−π

4
]},

B0,z
m (r) =

ikw

2k

√

2

πkwr
{(α+

m − α−
m) ei[kwr−π

2
m−π

4
] + (β+

m − β−
m) e−i[kwr−π

2
m−π

4
]}. (20)

Solution of the inhomogeneous Eq. (16) in the wall for r > a + ∆ can be obtained
using the Green’s function G±

m(r, r′),

B±
m(r) = B0,±

m (r) +
∫ ∞

a+∆
r′dr′G±

m(r, r′)R±
m(r′),

[
1

r

∂

∂r
r(

∂

∂r
) − (

m ± 1

r
)2 + k2

w]G±
m(r, r′) =

δ(r − r′)

r
. (21)
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Explicitly,

G±
m(r, r′) = −i

π

4
θ(r − r′) [H

(1)
m±1(kwr)H

(2)
m±1(kwr′) − H

(1)
m±1(kwr′)H

(2)
m±1(kwr)]. (22)

Here θ(r− r′) is the step function, θ(r− r′) = 1 for r > r′ and zero otherwise. Eq.(21)
takes form of the integral equation,

B±
m(r) = B0,±

m (r) − i
αk2

w

8

∞
∑

n=−∞

s(n − m)
∫ r

a+∆
r′dr′[H

(1)
m±1(kwr)H

(2)
m±1(kwr′) −

H
(1)
m±1(kwr′)H

(2)
m±1(kwr)]B±

n (r′). (23)

Using asymptotic values for the Bessel functions and defining b±(r) =
√

rB±
m(r),

Eq.(23) for r > a + ∆ takes the form

b±m(r) =
√

rB0,±
m (r) +

αkw

2π

∞
∑

n=−∞

s(n − m)
∫ r

a+∆
dr′ sin[kw(r − r′)]b±n (r′). (24)

For r < a + ∆, b±m(r) =
√

rB0,±
m (r).

In the case of a thick wall, b±m(r) has to decay at large r. If there is no slots, then
β±

m = 0, B±
m(r) = B0,±

m (r),

B±
m(r) = α±

m H(1)
m (kwr), Bz

m(r) =
ikw

2k
(α+

m − α−
m) H(1)

m (kwr). (25)

For a beam pipe wall with a slot the condition β±
m = 0 is not valid because the integral

term in Eq. (24) gives an exponentially growing contribution. Therefore, β±
m can be

defined only after Eq. (24) is solved.
To proceed further, we can expect that azimuthal harmonics b±n get smaller for larger

n. That is, certainly, the case when there are no slots. In this case, if the beam has zero
offset r0 = 0 there is only n = 0 harmonics, and with small r0 harmonics b±n ∝ (r0/a)n.
For narrow slots such a hierarchy still exists although non-zero harmonics may be present
even for the zero offset.

Let us consider the mode m = 0 neglecting coupling to the nonzero modes assuming
that the latter are small. Eq. (24) takes the form of the Volterra integral equation of the
second kind

b±0 (r) = f±
0 (r) +

αkw

2π
θ(r − a − ∆)

∫ r

a+∆
dr′ sin[kw(r − r′)]b±0 (r′), (26)

where f±
0 (r) is the field in the beam-pipe wall with no slots

9



f±
0 (r) =

√

2

πkw

{α±
0 ei[kwr∓π

2
−π

4
] + β±

0 e−i[kwr∓π

2
−π

4
]}. (27)

Solution of Eq. (26) at r > a + ∆ can be obtained using Laplace transform, defining

b̃(p) =
∫ ∞

a+∆
dre−prb±0 (r), f̃0(p) =

∫ ∞

a+∆
dre−prf±

0 (r). (28)

Integrating by parts, we get

b̃(p) =
f̃0(p)

1 − K(p)
(29)

where K(p) is the Laplace transform of the kernel in Eq. (26),

K(p) =
αkw

2π

∫ ∞

0
dr e−pr sin(kwr)

=
α

2π

k2
w

p2 + k2
w

. (30)

Inverse Laplace transform gives at r > a + ∆

b±0 (r) = f±
0 (r) +

∫ r

a+∆
dr′R(r − r′) f±

0 (r′), (31)

where

R(r) =
∫ i∞+ε

−i∞+ε

dp

2πi
epr K(p)

1 − K(p)
. (32)

Here ε > 0 and the contour is to the right of the integrand singularities.
Simple calculations give

R(r) =
αkw

2πκ
sin[κkwr], (33)

where κ =
√

1 − α/2π.

Eq. (31) gives

b±0 (r) = bg(r) + bd(r),

bg(r) =
1

κ
√

2πkw

e−ikw(r−a−∆)κ−ikw(a+∆)∓i π

2
−i π

4 ∗

(α±
0 (−1 + κ) e2ikw(a+∆) + β±

0 (1 + κ) e2i(±π

2
+π

4
)),

bd(r) =
1

κ
√

2πkw

eikw(r−a−∆)κ−ikw(a+∆)∓i π

2
−i π

4

(α±
0 (1 + κ) e2ikw(a+∆) + β±

0 (−1 + κ) e2i(±π

2
+π

4
)). (34)
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The term bg(r) grows exponentially with r and has to be cancelled out. That defines

β±
0 = iα±

0 κ0 e2ikw(a+∆), (35)

where

κ0 =
1 − κ

1 + κ
, κ =

√

1 − α

2π
. (36)

Hence,

B±
0 (r) = ∓α±

0 (1 + i)

√

1

πkwr
{eikwr +

1 − κ

1 + κ
e−ikwr+2ikw(a+∆)}, (a < r < a + ∆)

B±
0 (r) = ∓α±

0

(1 + i)√
πkwr

2

1 + κ
eikw(r−a−∆)κ+ikw(a+∆), (r > a + ∆).

Note, that B±
0 (r) and its derivative are continues at r = a + ∆.

Calculations of Bz
0(r) give for r < a + ∆

Bz
0(r) =

(1 + i)

2k

√

kw

πr
(α+

0 − α−
0 ) (eikwr − κ0e

−ikwr+2ikw(a+∆)), (37)

For the harmonics m > 0, calculations can be carried out in the similar way. For
m > 0 and a < r < a + ∆, the solution is b±m(r) = f±

m(r),

f±
m(r) =

√

2

πkw

{α±
m ei(kwr− 3π

4
−πm

2
) + β±

m e−i(kwr− 3π

4
−πm

2
)}, (38)

with constants α±
m and β±

m.
For m > 0 and r > a+∆, Eq. (24) gives taking into account coupling to m = 0 mode

b±m(r) = h±
m(r) +

αkw

2π
θ(r − a − ∆)

∫ r

a+∆
dr′ sin[kw(r − r′)]b±m(r′), (39)

where

h±
m(r) = f±

m(r) +
αkw

2π
s(m)θ(r − a − ∆)

∫ r

a+∆
dr′ sin[kw(r − r′)]b±0 (r′). (40)

Note that solution of Eq. (39) is automatically matched with Eq. (38) ar r = a + ∆
with its derivative. The explicit form of the solution can be obtained again with Laplace
transform,

b±m(r) = h±
m(r) +

αkw

2πκ
θ(r − a − ∆)

∫ r

a+∆
dr′ sin[κkw(r − r′)]h±

m(r′). (41)
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Eq. (31) can be obtained from here replacing h±
m(r) with f±

0 (r). Eq. (41) can be
simplified using Eq. (31),

b±m(r) = f±
m(r) +

αkw

2πκ
θ(r − a − ∆)

∫ r

a+∆
dr′ sin[κkw(r − r′)]f±

m(r′) +

(1 − δm,0)s(m)θ(r − a − ∆)
αkw

2πκ

∫ r

a+∆
dr′ sin[κkw(r − r′)]b±0 (r′). (42)

To cancel the exponentially growing terms at r → ∞, we put

β±
m = iκ0{α±

m +
s(m)

κ
α±

0 eimπ/2} e2ikw(a+∆)−iπm. (43)

That defines the fields in the wall in terms of the coefficients α±
m and c±,>

m , m = 0, 1, ...
These coefficients are determined by the matching the tangential components of the E
and B fields at r = a for each m. Calculations are straightforward but cumbersome. Here
we give explicit expressions in the limit kw >> k, k2a/kw << 1. In this case,

c+
m = − eZ0

2πa
(
r0

a
)m+1 (

k

kw

)2 (
kwa

(1 + m)(1 + κ0 e2ikw∆)
) {(r0

a
)m(1 − κ0 e2ikw∆) −

e2ikw∆ s(m)κ0

(m + 1)κg0

[2i(m + 1) − k2a

kw

(1 − κ0 e2ikw∆)]}, (44)

c−m =
eZ0

2πa
(
r0

a
)m−1 {−i(

r0

a
)m − s(m)

kwag0

κ0

κ

(
e2ikw∆

(1 + m)(1 − κ0e2ikw∆)
) [

k2a

kw

+ i(k2a2 − 2m(m + 1)) (1 − κ0e
2ikw∆)]}, (45)

α+
m = (1 + i)

eZ0

4

√

kw

πa

e−ikwa+imπ/2

1 + κ0e2ikw∆
{−(

r0

a
)m +

e2ikw∆ κ0s(m)

κg0

[i +
m

kwa
− k2a

(1 + m)kw

]}, (46)

α−
m = α+

m(1 − 2k2

k2
w

) +
(1 + i)eZ0k

2s(m)

2g0k3
wa2(1 − κ0 e2ikw∆)2

(
κ0

κ
)

√

kwa

π
e−ikwa+2ikw∆+imπ/2. (47)

where

g0 = i(1 + κ0 e2ikw∆) +
k2a

kw

(1 − κ0 e2ikw∆). (48)

Coefficients α±
0 for the harmonics m = 0 can be obtained from here putting s(m) → 0

and then m → 0.
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3 Results

Eqs. (38)-(45) define the fields in the wall and the beam-pipe. For example, the azimuthal
component Bφ

m(r) in the range a < r < a + ∆ is

Bφ
m(r) =

e3iπ/4+ikwr

κ(1 + κ)

√

1

2πkwr
{−e−2ikw(r−a−∆)(−1 + κ)s(m)(α+

0 + α−
0 ) +

κe−imπ/2 [−e−2ikw(r−a−∆)(−1 + κ) + (1 + κ)](α+
m + α−

m)}. (49)

The field Bφ
m(r) = (−i/2)(B+

m − B−
m) in the range r > a + ∆ is defined by

B±
m(r) =

(1 + i)

κ(1 + κ)

eikw[a+∆+κ(r−a−∆)]

√
πkwr

{±is(m)(κ − 1)(−i − kw(r − a − ∆)(1 + κ))α±
0

e−imπ/2 ∓ 2κα±
m}. (50)

The radial dependence of the m = 1 harmonics of Bφ(r) within the wall is illustrated
in Fig. (6) for three values of the screen thickness (a) ∆ = 0.01 cm, (b) ∆ = 0.2 cm,
and (c) ∆ = 0.5 cm. Other parameters were: a = 5 cm, stainless-steel wall conductivity
σ = 1.4 104 Ohm−1cm−1, α = 0.04, and the offset r0 = 0.001 cm. At frequency 1 MHz,
δ(ω) = 0.042 cm. The radial behavior shows the resonance character caused by reflection
from the slot.

The magnetic flux Φ(ω) through the wire contour with the length L shown in Fig. (5)
is obtained integrating

Φm(ω) = L
∫ ∞

a+∆
drBφ

m(r) (51)

=
L(1 + i)

2kwκ2(1 + κ)

eikw(a+∆)−imπ/2

√

πkw(a + ∆)
{s(m)(

(1 + 2κ)(κ − 1)

κ
(α+

0 + α−
0 ) eimπ/2 − 2κ(α+

m + α−
m)}.

Φ(ω) defines the harmonics of the voltage Vm(ω) induced in the contour,

dVm(ω)

dω
=

∮

Eω.dl = (
ik

2π
) Φm(ω). (52)

The spectral density is shown in Fig. (7).
Induced voltage Um(t) in the contour by a single beam particle lagging at zi from the

bunch center is obtained integrating over frequencies

Um(t) = 2Re[
∫ ∞

0

dVm(ω)

dω
e−iωzi−iωt dω]. (53)
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The signal from a bunch is obtained by summing up contributions of all particles and,
for a Gaussian bunch with the rms length σb, replacing the sum by the spectrum density
of the bunch,

∑

i

e−iωzi → e−
1

2
(

ωσb

c
)2 . (54)

Then,

U bunch
m (t) = 2Re[

∫ ∞

0

dVm(ω)

dω
e−

1

2
(

ωσb

c
)2 e−iks dω]. (55)

Result of integration per single electron for m = 1 mode is shown in Fig. (8) for
L = 10 acm and a = 5 cm.

The longitudinal beam impedance Z l
m(ω) per unit length is given by the coefficient

c+
m,

Z l
m(ω) = −1

e

(m + 1)c+
m

kr0

(
r

r0

)m. (56)

Z l
m(ω) =

Z0

2πa
(
r

a
)m (

k

kw

) (
1

1 + κ0 e2ikw∆
) {(r0

a
)m(1 − κ0 e2ikw∆) −

e2ikw∆ s(m)κ0

(m + 1)κg0

[2i(m + 1) − k2a

kw

(1 − κ0 e2ikw∆)]}, (57)

The longitudinal impedance is dominated by the contribution of m = 0 mode.

Z l(ω) =
Z0

2πa
(

k

kw

) (
1 − κ0 e2ikw∆

1 + κ0 e2ikw∆
). (58)

In the limit ∆ → ∞ Eq. (58) gives the usual result for the longitudinal impedance
per unit length

Z l(ω) = (1 − i)
Z0

2πa
(
kδ(ω)

2
). (59)

For an open slot ∆ → 0, result Eq. (59) is modified by additional factor. For small
α << 1,

Z l(ω) = (1 − i)
Z0

2πa
(
kδ(ω)

2
) (

α

4π
). (60)

Similarly, the dominant contribution to the transverse impedance per unit length is
given by the dipole mode m = 1,

Ztr(ω) =
Z l(ω)

kr2
0

. (61)
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For small α << 1,

Ztr(ω) = (1 − i)
Z0δ(ω)

4πa3
{1 − κ0 e2ikw∆

1 + κ0 e2ikw∆
−

κ0

2κg0

(
a

r0

)
e2ikw∆

1 + κ0 e2ikw∆
[4i − k2a

kw

(1 − κ0 e2ikw∆)]}. (62)

For large ∆ >> δ(ω), expression in the curly brackets is equal to one giving the usual
transverse resistive wall impedance per unit length. Eq. (62) shows that, contrary to the
usual resistive wall impedance, Z tr(ω) for a beam pipe with a slot depends on the offset
r0. This dependence is weak provided

r0

a
>>

α

4π
e−2∆/δ, (63)

but may be give

Ztr(ω) = (1 − i)
Z0δ(ω)

4πa3
[1 − α

4π
(
a

r0

)], (64)

for an open slot ∆ → 0. The second term in the impedance Eq. (64) corresponds to a
constant force acting on the beam due to a longitudinal slot in the beam pipe. Calculating
the wake field due to the last term in Eq. (64),

Wtr(z) = i
∫ dω

2π
Ztr(ω) e−iωz/c,

Wtr(z) = −(
α

2πa2r0

1√
πZ0σz

, (65)

and using equation of motion for a particle located at the distance z from the head of
a bunch with the bunch population Nb

d2x

ds2
+ g(s)x(s) =

Nbre

γ
Wtr(z)r0, (66)

we get for the average perturbation of the closed orbit

〈x(s)〉 = −(
Nbre

γ
(

α

2π
) 〈(βx

a
)2〉 1√

πZ0σz
. (67)

Here re is classical electron radius, and βx is the horizontal beta function. Effect
is very small, 〈x(s)〉 ' 0.5 µm for a particle at the distance z = 1 cm for parameters
Nb = 6. 1010, γ = 6.0 103, βx = 15 m, a = 5 cm, and stainless steel conductivity.
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4 Appendix 1: Derivation of the BPM impedance

The geometric impedance derived above does not take into account the current induced in
the wire inserted in the slot. To take it into account, we follow G. Lambertson arguments.

The reciprocity theorem states that beam current jb(ω,−→r ) and the current induced in
the wire jw(ω,−→r ) generate the fields Eb(ω,−→r ) and Ew(ω,−→r ), respectively, are related,

∫

dV jb(ω,−→r )Ew(ω,−→r ) =
∫

dV jw(ω,−→r )Eb(ω,−→r ). (68)

The Fourier component of the beam current jb(ω,−→r ) = ecρ(−→r ) e−iωs/c of a single
ultra-relativistic particle gives for a point-like particle moving along the s-axes with the
offset r0

∫

dV jb(ω,−→r )Ew(ω,−→r ) = e
∫

dsEw(ω, r0, s) e−iωs/c. (69)

Comparing this expression with the definition of the beam impedance Z(ω) generated
by the field E(ω,−→r ) of a source ultra-relativistic particle moving along the s-axes with
the offset r0

Z(ω) =
1

e

∫

dsE(ω, r0, s) e−iωs/c, (70)

we obtain from Eqs. (69)-(68) result for the beam impedance induced by the wire,

Z(ω) =
1

e

∫

dV jw(ω,−→r )Eb(ω,−→r ). (71)

For a thin wire, the integral in the right-hand-side
∫

dV jw(ω,−→r )Eb(ω,−→r ) = Iw(ω)Vw(ω). (72)

Here Vw(ω) is the voltage induced in the wire given by the contour integral along the
wire

Vw(ω) =
∮

dlEb(ω, r(l)), (73)
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where Eb is taken at the location of the wire. The wire current Iw(ω) in Eq. (72) is
depends on the impedance of the wire loop Zw(ω),

I(ω) =
Vw(ω)

Zw(ω)
. (74)

From the Maxwell equation, the contour integral can be converted to the surface
integral over the plane enclosed by the wire

∮

dlEb(ω, r(l)) = i
ω

c

∫ −→
dS.

−→
Bb(ω, S). (75)

For a flat wire loop in the (r, s) plane with the length Lw in the s-direction, we obtain
neglecting variation of the azimuthal component Bφ

b along the beam pipe

∮

dlEb(ω, r(l)) = i
ωLs

c

∫

drBφ
b (ω, r), (76)

where the integral is taken over the span of r inclosed by the loop.
Combining Eqs. (71)-(76), we get

Vw(ω) = i
ωLs

c
eZ0 F (ω),

Z(ω) =
(Vw(ω))2

e2Zw

, (77)

where we introduced dimensionless

F (ω) =
1

eZ0

∫

drBφ
b (ω, r). (78)

Note that F (ω) and Z(ω) are independent of the particle charge e.
The field Bφ

b (ω, r) can be approximated by the field of the beam. For a wire in a slot
in the wall a + ws < r < a + w, ws < w, Bφ

b (ω, r) is approximately given by the field
outside of the beam pipe with the inner radius a and the wall thickness ws.
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Figure 6: Radial dependence of the m = 1 harmonics of Bφ(r) within the wall for (a)
∆ = 0.01 cm, (b) ∆ = 0.2 cm, and (c) ∆ = 0.5 cm. Note the difference in scale. Other
parameters are given in the text.

18



0 0.5 1 1.5 2
f HGHzL

-0.2

-0.1

0

0.1

0.2

0.3

0.4

10
6

R
e@dVHΩ

L�dΩD�
He�cL
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Figure 8: Voltage induced in the wire loop by the dipole harmonics of the azimuthal Bφ

field of a single beam particle. ∆ = 0.01 cm, other parameters are the same as in Fig.
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