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Abstract

Detection of the field induced by a beam outside of the beam pipe can be used
for the beam diagnostics. A wire in a longitudinal slot in the beam pipe wall
can be used as a beam position monitor with a very small coupling impedance
avoiding complications of the feed-through. The signal can be reasonably high at low
frequencies. We calculate the beam-coupling impedance due to a long longitudinal
slot and the signal induced in a wire placed in such a slot and shielded by a thin
screen from the beam. Results can be relevant for impedance calculations of the
slot to ante-chamber and slots of the DIPs.

PACS numbers: 29.27.Bd, 29-20-Dh, 41-60, 52-59-f

1 Introduction

The electro-magnetic (EM) field induced by a beam outside of a thin beam pipe may be
quite noticeable. The analytical solution for electromagnetic fields in a round beam pipe
can be find elsewhere [1]. Fig. (1) shows the time profile of the field induced by a bunch
on the inner side (pancake thin red line) and on the outer side (blue line) of a stainless
steel tube. The bunch length is 10 mm, the tube radius is 5 mm, the wall thickness is
0.1 mm. It can be seen that the field amplitude outside of the pipe decreases only by 100
times.
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Figure 1: Field on the inner (ed line) and outer (blue line) sides of a beam pipe.

Another example is given in Fig. (2) for an aluminum chamber of radius 2.5 mm with
a tube thickness of 0.5 mm (parameters of the LCLS [2], round chamber). The signal
outside the pipe in this case may reach amplitude of 35 V/m for 1 nC bunch.

In both examples, the main contribution to the signal is given by the low frequencies
modes which can penetrate through the wall. Such frequencies for short bunches are
much lower than the width of the bunch spectrum. Therefore, the signal is practically
independent on the bunch length what simplifies design of the BPM electronics. Another
common feature of both results is the time delay between the signals on the inner and
outer sides defined by the diffusion time of the magnetic field through the wall (about 3
ns in Fig. (1) and 200 ns in in Fig. (2)).

The field of a bunch outside of the beam pipe can be detected and used to build a
a beam position monitor (BPM) without any feed-through preserving the smooth beam
pipe wall seen by the beam. An idea of a BPM based on detection of the EM field behind
a thin foil was suggested long ago [3]. Based on this approach, a low impedance BPM was
proposed and tested by one of the authors (A.A.) for the VEPP-5 collider, a B-factory
project considered to be built in Novosibirsk [4]. To prove feasibility of the approach an
experimental model was built as shown in Fig. (3). The experimental signal measured
outside of the beam pipe with the 15 mm inner radius [4] is shown in Figure (4). At
that time, the full solution for EM fields was not obtained but simple estimates were
used to derive the signal amplitude and duration. Dipole mode of the beam EM field was
simulated by a short pulse propagating in a two wire transmission line. The transmission
line was inserted into an aluminum pipe with central part of the pipe replaced with a



Aluminum chamber: r=2.5mm, t=0.5mm
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Figure 2: Field outside of the Al 0.5 mm round beam pipe.

50 um thick stainless steel foil. Magnetic field penetrating through the foil was measured
using 12 turns coil with 2 X 2 ¢m cross-section. Oscilloscope snapshot of the current pulse
in the transmission line and the signal measured by the coil are shown in Fig.(4) (a) and
(b), respectively [4]. Measured signal amplitude and duration were in good agreement
with expected values.

Such kind of a BPM may be used in free-electron lasers like LCLS where the wall
thickness can be as small as 0.5 mm [2]. In general, a BPM can be made as a loop of wire
set into a thin longitudinal groove (or several grooves) in the outer side of the beam-pipe
wall, see Fig. (5). For simplicity, we consider a round beam pipe denoting the inner radius
a, the thickness of a screen A, and the wall conductivity o,,,.

2 EM fields in a beam pipe with a slot

Let us start calculations of the EM fields in a pipe with a slot from the Maxwell equations
for a particle moving in a round beam pipe along the z axes with the offset ry and
velocity v. Assuming dependence on time in the form e~**, equations for the w-frequency
components of EM fields generated by the particle are
w 47 w
VxE=—B, VxB=-—(j"+0E)- —E, (1)
c c c
where o is the wall conductivity considered as a constant over w, p, is the particle
density, and j, is the current. The second equation can be written introducing D = eF
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Figure 3: Schematic view of the experimental set-up and electrical diagram of the trans-
mission line. 1- aluminum pipe, 2 - 50um stainless steel foil, 3 - Plexiglas foil support, 7
- measuring coil, 10 - two wire transmission line.

in the form

4
VXB_iJ _ W
C
4
e=1+i—". 2)
w

The first of Egs. (1) gives divB = 0, and from Eq. (2) and the continuity equation

—iwp® + divj, = 0, (3)
it follows that divD = 4mp°.



Figure 4: (a) Left pane: the signal from the transmission line terminating resistors,
5ns/div horizontal scale, and 20V /div vertical scale. (b) Right pane: the signal from the
measuring coil, 50 ns/div horizontal scale, and 20 mV /div vertical scale.

Figure 5: Sketch of the BPM design.

In cylindrical coordinates with the polar axes along the beam pipe axes, the current
. 2 b d
Jjb = Zvp°®, an

o= 5(r —ro) 8(¢) €. (4)

The wave equation follows from V x V x B = V(V.B) — AB and Maxwell equations.



In the regions of a constant e,

AB+(U)2eB= -2y,

C C

b _v0p o 0P by
(VX])T_T((M)’ (VX])¢_ U(ar)v (VX])Z_O (5)

At the boundaries, where € changes its value, tangential components of E and B have
to be continuous. Then the normal components of D and B are continuous automatically.

Let us expand B(r, ¢, z) over the azimuthal harmonics and assume dependence on z
in the form e™?*/?,

B(r,¢,z) = ¢*" 37 [FBy,(r) + 6By, (r) + 2B, (r)] €™, (6)

m=—00

where 7(¢), ¢(¢) and 2 are unit vectors. Eq. (5) written for the components BZ(r) =
B, +iB? and Bz, takes the form

L2 Dy - L (@ - L g B = - (o) 2 On0)
0 ) L RS R )
where
pun(r) = 5 3(r —10). (8)

Inside of the beam pipe, ¢ = 1. In the ultra-relativistic case, Eq. (7) are simplified to

(o) = (L PBE ) = —ami (M) 5 Onl))
L )~ (B =0 )

where k = w/ec.

In the region r < 7y solution does not contain the singular term ar » — 0 and has to
be matched with the solution in the region ry < r < a. Conditions for matching at r = r
are defined by the right-hand-side (RHS) of Eq. (9),

ez OBLX>(r)  OBE:<(r __ieZo(m+£1)

Bi’> — Bi’< =4+ r=ro —
m” (r0) m~(r0) 27y’ or or Jr=ro 272

(10)



Here Zy = 47 /c = 120 Ohm.
The fields at r < rq are:

BX<(r) = ¢ (;”O)mﬂ’

B(r) = (3o ) ()",

Bre(r) =i e (o, (11)
Ep=(r) = %i (r )k (2m 4 2m? 4 k2r?) — ¢ K22 — ieZok®ro},
Eg<(r) = 2]; ( : )m ek (2m 4 2m? — k*r?) — ¢, K*rd —ieZok®ro},
B =1 F 1 <1>mc+. (12)

l{?TO To m

The fields at ry < r < a are:

B> (r)=ct (L)m+1 P20 (70 ymia
m o 2Ty T ’
By (r) = ¢ (-,
To
m+1 T
B> +(ym, 13
27 () =i e () (13)
ey T
E5> 2 2 ]f22 k2 Lm_zeojm
1) = 21{:27“7‘0{ Gl (2m 2o 1) (L) + K2 (i ()7 = S0,
ey T
Eo> 9 o2 — k22 (1ym 202 (o= (ym | €40 (Toym
27 0) = g (et m ot 2t = 1) (7 = e, (2 S (),
1
B () = 22 (e (14)

k?‘o To m

Inside of the beam-pipe wall, r > a, Eq. (7) in the ultra-relativistic case takes the
form

10 ,0 m=+1
o) ~ )
Here k2 = (£)* (e — 1),

L+ kB (r) = Ry (r). (15)



Ao w 141
2 =i—(5)? ky= 16
=iy, s (16)
where 0, = ¢/v/2mow is the skin depth.
The RHS RZ(r) is equal to zero in the metal. In the slots, 7 > a + A, |¢| < «/2, the

RHS is

R:tz _kQ Z// d(b :I:z )ei(n—m)QS

/2 27 n

= O;]j;” i s(n — m)BX*(r) (17)

n=—oo
where « is the angular slot width, and

) = sin[(n — m)a/2]
s(n ) (n—m)a/2

Solution of the homogeneous Eq. (15) at r > a is given in terms of the Bessel functions

(18)

B (r) = a Hyy (K T)+ﬁ$Hmil(/€w7‘)

1
BY(r) = —

+
Zk(

o = o) Hi) (ko) = 7,;"(5; — B )HD (kor). (19)

m

This solution is valid in the metal for a < r < a+ A, and the tangential components of
the fields B and F = (i/ke)V x B has to be matched with the solution inside of the beam
pipe at the beam-pipe radius » = a. For frequencies for which the skin depth 6, << a,
we can use the asymptotic of the Bessel functions,

2
kT
iky
2k WkwT{(

B&i(r) = {a cilkwr=5(mE)-5] | 535 efi[kwrf%(mil)—%}}’

BY(r) = — o) el il (g ) emiber—ime i) (20)

Solution of the inhomogeneous Eq. (16) in the wall for » > a + A can be obtained
using the Green’s function G (r, 1),

)= B+ [ PG RAW),
a+A

(
19 0 mEly o i, g O —17)
ra ) +kw]Gm(r7T) - '

[ Tr(ar)_( r r




Explicitly,

m m

G (1) = =i 700 — ') [Hihy (hur) HiZks (k') = Hiky (kur ) H (kar))-—(22)

Here 6(r —r') is the step function, §(r —r’) = 1 for r > r’ and zero otherwise. Eq.(21)
takes form of the integral equation,

k’2 ] r
Bi(r) = BYF(r) =g 3 stn—m) [ v’ (HoLy(kar) Hik (k') -
Hyo (k') H 2 (k)| BE () (23)

Using asymptotic values for the Bessel functions and defining b*(r) = /rBZ(r),
Eq.(23) for r > a + A takes the form

bE(r) = /rBYE(r) + Odjrw _z: s(n—m) /a:-A dr’ sinfk,(r — r)]bE(r').  (24)

For r < a+ A, bE(r) = /rB%*(r).
In the case of a thick wall, bE (r) has to decay at large r. If there is no slots, then
B =0, By(r) = By (r),

"
Bi(r) = o, HO) (kur), By, (r) = 5 (agh, = ) HO (ko). (25)

m - m

For a beam pipe wall with a slot the condition 3 = 0 is not valid because the integral
term in Eq. (24) gives an exponentially growing contribution. Therefore, 8= can be
defined only after Eq. (24) is solved.

To proceed further, we can expect that azimuthal harmonics b get smaller for larger
n. That is, certainly, the case when there are no slots. In this case, if the beam has zero
offset ro = 0 there is only n = 0 harmonics, and with small ry harmonics b> o< (rg/a)™.
For narrow slots such a hierarchy still exists although non-zero harmonics may be present
even for the zero offset.

Let us consider the mode m = 0 neglecting coupling to the nonzero modes assuming
that the latter are small. Eq. (24) takes the form of the Volterra integral equation of the
second kind

bE(r) = fE(r) + 0‘2’:” O(r —a—A) / TM dr sinfke (r — 7 )|bE (), (26)

where fif(r) is the field in the beam-pipe wall with no slots



2 . T T . m™_ T
fifr) = || fag ePers i3 4 g o3 Ty, (27)
Tk
Solution of Eq. (26) at > a + A can be obtained using Laplace transform, defining
bp) = [ dre (), folp) = [ dre (). (28)
a+A at+A
Integrating by parts, we get

fo(p)

bip) = 202 29
)= 2% (29)
where K (p) is the Laplace transform of the kernel in Eq. (26),
ko [ :
K(p) = a—/ dr e P sin(k,r)
2 Jo
a k2
=y = (30)
Inverse Laplace transform gives at r > a + A
b) = fE )+ [ RO =) (), (31)
a+
where
Ry = [ 8 e K (32)
—i00+€ 21 1-— K(p) ’
Here € > 0 and the contour is to the right of the integrand singularities.
Simple calculations give
kw .
R(r) = ;7 sin[kky, 7], (33)
where k = /1 — o/27.
Eq. (31) gives
by (1) = by(r) + ba(r),
1 : . -
b _ —iky (r—a—A)k—iky (a+A)Fi 5 —i G
o(r) K/ 27k, c *
(aF (=1 + k) e¥hFe@tB) L gE (1 4 k) HETHD),
1 , , -
b — iky (r—a—A)k—iky (a+A)Fig5 —i 5
alr) K 21k, c
(a(:)l: (1 + /i) e2ikw(a+A) + 66!: (_1 + H) 62i(:|:§+§))‘ (34)

10



The term b,(r) grows exponentially with r and has to be cancelled out. That defines

G = g el (35)
where
11—k a
= =4/1 — —. 36
Ro 1 + /{/7 R 27T ( )
Hence,

BE(r) = Fag (1 +1) ‘/ { thwr 4 1+/< _Zk““’k“’(“*m}, (a<r<a+A)

1+@
Bi
(r) = Fa \/ wr1+m

Note, that By (r) and its derivative are continues at r = a + A.
Calculations of B§(r) give for r < a+ A

ezkw(r a— A)K+zkw(a+A), (7, > a+A)

1+1 Koy , , A
Bz(’l“) _ ( 2—; Z) E + aa) (67,kw7“ o Hoe—zkwr—i—szw(a—i—A))’

For the harmonics m > 0, calculations can be carried out in the similar way. For
m >0 and a <r < a+ A, the solution is bE (r) = fZ(r),

| {Oé el(kwT 3m mn)‘i‘ﬁi i(kwr— ff—)} (38)

with constants o and ﬁfﬁb.
For m >0 and r > a+ A, Eq. (24) gives taking into account coupling to m = 0 mode

(37)

b (r) = hi(r) + 0‘2’; or—a=2) [ a'sinfk,(r = Ba0), (39
where
hi(r) = fE(r) + O;k;u s(m)f(r —a— A) /{;A dr’ sin[k,, (r —")]bE (). (40)

Note that solution of Eq. (39) is automatically matched with Eq. (38) ar r = a + A
with its derivative. The explicit form of the solution can be obtained again with Laplace
transform,

bE(r) = hi(r) + ;ék O(r —a—A) /T R dr' sin[kk, (r — r)|hE (1), (41)

TR

11



Eq. (31) can be obtained from here replacing h(r) with f5(r). Eq. (41) can be
simplified using Eq. (31),

e r) = )+ o gl —a = ) [ sinlskr — )]0 +
a+
(1 = 0pm0)s(m)b(r —a — A)gkw /T dr’ sin[kky, (r — ')]bE (). (42)
TR Ja+A
To cancel the exponentially growing terms at r — oo, we put
ﬁi _ mo{ai 4 S(Tn)aa[ eimrr/2} p2ikw (a+A)—imm. (43)
K

That defines the fields in the wall in terms of the coefficients af and ¢&>, m =0, 1, ...
These coefficients are determined by the matching the tangential components of the E
and B fields at r = a for each m. Calculations are straightforward but cumbersome. Here
we give explicit expressions in the limit k,, >> k, k*a/k, << 1. In this case,

T €Zo 10\ i1, K \o kwa Toym 2ikw A
=—(— — : —)™(1 — wa)
Cm 27ra(a) (kw) ((1+m)(1+ﬁoe2lkwA)){(a) ( o € )
sikwa  S(M)ko . ka 2ikw A
w I S 2 1 o 1 _ W 44
(m+ l)ligo[ im+1) kw ( o ¢ I (44)
Z
= 20 Pyt (o M)t
2ma " a a kywago K
e2ikw k%a 2 9 ik A
: — +i(k*a” — 2 1)) (1 — o 45
((1 +m)(1— KOGszwA)) [ e +i(ka m(m+1)) (1 — ke )N}, (49)
—ikwa+imm/2
Y o o
am_(l_'_z) 4 Ta 1+H0€2ikwA{ <CL> +
2k K0S(M) m k*a
h — 4
© K40 U kya  (1+ m)kw]}’ (46)
2k> (1 +1i)eZok?s(m) Koo [kwa . . ,
- —_ 5t 1 - 22 : Y wt fzkwa+21kwA+zm7r/2_ 47
where
. ik A ka ik A
go = i(1 + ko e™™ )—i—k—(l—fioe w3, (48)

Coefficients o for the harmonics m = 0 can be obtained from here putting s(m) — 0
and then m — 0.

12



3 Results

Eqgs. (38)-(45) define the fields in the wall and the beam-pipe. For example, the azimuthal
component B? (r) in the range a < r < a + A is

Bo(r) = S [ L (et a1t g)s(m)(ag + ap) +

") — — e~ 2ikuw —14k)s(m)(af + «

m )= 0w\ 2k o

re M2 [T ke (TR (] 4 ) + (14 K)](), + ) (49)

The field B? (r) = (—i/2)(B;, — B,,) in the range 7 > a + A is defined by

i 6ikw[a+A+n(rfafA)]
Bi(r) = m((lli /i) NG {+is(m)(k — 1) (=i — ky(r —a— A)(1 +k))ad

e”mm/2 £ 9kat Y. (50)

The radial dependence of the m = 1 harmonics of B?(r) within the wall is illustrated
in Fig. (6) for three values of the screen thickness (a) A = 0.01 cm, (b) A = 0.2 cm,
and (¢) A = 0.5 cm. Other parameters were: a = 5 cm, stainless-steel wall conductivity
o =1.410* Ohm~tem™, o = 0.04, and the offset g = 0.001 cm. At frequency 1 MHz,
d(w) = 0.042 cm. The radial behavior shows the resonance character caused by reflection
from the slot.

The magnetic flux ®(w) through the wire contour with the length L shown in Fig. (5)
is obtained integrating

,(w) = L / ~ darB2(r) (51)
a+A
B L(l + Z) eikw(aJrA)*imﬂ/Q (1 + 2%)(% . 1)
2k,k2(1 + K) Tho(a + A) K

(ag +ag) €™ — 2k(ast, + o)}

®(w) defines the harmonics of the voltage V,,(w) induced in the contour,

Vi (@) ik
= ¢ E,dl =(—)P,(w). 02
ne (52) Pmlw) (52)
The spectral density is shown in Fig. (7).

Induced voltage U,,(t) in the contour by a single beam particle lagging at z; from the
bunch center is obtained integrating over frequencies

Un(t) = 2Re[ |~ dv;;f‘*’) ¢TI ), (53)

13



The signal from a bunch is obtained by summing up contributions of all particles and,
for a Gaussian bunch with the rms length o}, replacing the sum by the spectrum density
of the bunch,

Z e~y =3 (M) (54)
Then,

e 2

o ( 1,90p\2 -
Vm(‘”) —(Tb) efzks dw] (55)

UBeh(t) = 2Rel [

0 dw
Result of integration per single electron for m = 1 mode is shown in Fig. (8) for
L =10 acm and a = 5 cm.
The longitudinal beam impedance Z! (w) per unit length is given by the coefficient
+
o

1 (m+ 1) r

qun(w) T e " kre <70>m (56)
Z1,@) = e (5" () (1 ) (G20 = g 202)
sikea  S(M)Ko i(m _kia oo likwds
eiheds i 1) = 5 (1= ma 2], (57)

The longitudinal impedance is dominated by the contribution of m = 0 mode.
Zo ( k1 — kge2hed
kw 1 + Ko €2ikwA '

In the limit A — oo Eq. (58) gives the usual result for the longitudinal impedance
per unit length

Z'(w) =

 2ma (58)

ZHw) = (1 — i) 22

2ma

kd(w)
) (59)

For an open slot A — 0, result Eq. (59) is modified by additional factor. For small
a << 1,

Zy ko(w),  «

Z'w) = (1= i) 2 (2 (), (60)

Similarly, the dominant contribution to the transverse impedance per unit length is
given by the dipole mode m =1,

Z'(w)

7" (w) = e

(61)

14



For small o << 1,

~Zo0(w) 1 — kg ekl
tr - 0 0
27 w) = (1= 4rad {1 + kg 2kl

ik A 2
Ko , a e2thw . kfa ik A

— , 4y — — (1 — w . 62
2kg0 1o’ 1+ Kq e2kwi [4¢ kw (L= roe ) (62)

For large A >> §(w), expression in the curly brackets is equal to one giving the usual
transverse resistive wall impedance per unit length. Eq. (62) shows that, contrary to the
usual resistive wall impedance, Z' (w) for a beam pipe with a slot depends on the offset
ro. This dependence is weak provided

To X _on/s
—>> — , 63
a 47 ¢ (63)

but may be give

2oy - 22y, (61)

B E To
for an open slot A — 0. The second term in the impedance Eq. (64) corresponds to a
constant force acting on the beam due to a longitudinal slot in the beam pipe. Calculating
the wake field due to the last term in Eq. (64),

Z"(w) = (1 —1)

. dw r —wz/c
Wir(z) =i th (w) e~w/e,
« 1

_(27ra27°0 NI

and using equation of motion for a particle located at the distance z from the head of
a bunch with the bunch population NV,

Wi (2) =

(65)

d?*z Nyre
o+ 0()a(s) =~ W), (66)
we get for the average perturbation of the closed orbit
Nbre ﬁx 2 1

a

(2(s)) = —( ~ (%) (( a ) >m‘
Here r, is classical electron radius, and (3, is the horizontal beta function. Effect

is very small, (z(s)) ~ 0.5 wm for a particle at the distance z = 1 cm for parameters

Ny = 6.1010, v = 6.010%, 3, = 15 m, a = 5 cm, and stainless steel conductivity.

(67)
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4 Appendix 1: Derivation of the BPM impedance

The geometric impedance derived above does not take into account the current induced in

the wire inserted in the slot. To take it into account, we follow G. Lambertson arguments.
The reciprocity theorem states that beam current j,(w, 7) and the current induced in

the wire j,(w, T) generate the fields Ey(w, 7) and E,(w, 7), respectively, are related,

/deb(w, TVEy(w, 7) = /dew(w, TV Ey(w, ). (68)

The Fourier component of the beam current ju(w, 7) = ecp(7T)e /¢ of a single

ultra-relativistic particle gives for a point-like particle moving along the s-axes with the
offset rq

/deb(w, T)Ey(w, 7) = e/ds Ey(w,r,s)e”s/e. (69)

Comparing this expression with the definition of the beam impedance Z(w) generated
by the field F(w, 7") of a source ultra-relativistic particle moving along the s-axes with
the offset rg

1 .
Z(w) = - /ds E(w, g, s) e /e, (70)
we obtain from Egs. (69)-(68) result for the beam impedance induced by the wire,
1
Z(w) = - [ dVijulw, T)Ey(w, ). (71)
For a thin wire, the integral in the right-hand-side
[ AViule, 7)Bw, ) = Lo(@)Va(w). (72)

Here V,,(w) is the voltage induced in the wire given by the contour integral along the
wire

Vo(w) = 7( dl Ey(w, (1)), (73)

16



where FEj, is taken at the location of the wire. The wire current [,,(w) in Eq. (72) is
depends on the impedance of the wire loop Z,,(w),

1= 10

From the Maxwell equation, the contour integral can be converted to the surface
integral over the plane enclosed by the wire

(74)

fﬂawwmyﬂf 3. By(w, S). (75)

Cc

For a flat wire loop in the (7, s) plane with the length L,, in the s-direction, we obtain
neglecting variation of the azimuthal component Bl‘f along the beam pipe

fdlEb(w,r(z)) - zwf /drB;?(w,r), (76)

where the integral is taken over the span of r inclosed by the loop.
Combining Eqgs. (71)-(76), we get

L,
Vi (w) :z’wc e Zy F(w),
(Vw(w))Z
7 = 77
(w) = 5 (77)
where we introduced dimensionless

Fw) = — [ drBio.n) (78)

w) = 7 rBy (w,r).

Note that F(w) and Z(w) are independent of the particle charge e.

The field B,‘f (w, ) can be approximated by the field of the beam. For a wire in a slot
in the wall a + w, < 7 < a4 w, w, < w, B (w,r) is approximately given by the field
outside of the beam pipe with the inner radius a and the wall thickness ws.

17



5 5.05 51 5.15 52
r (cm)

S0z ©

5 51 52 53 54
r(cm)

N

o

10° By /(€Zo/2 7 @)
o o1 B a N O1

5 52 54 56 58 6
r (cm)

Figure 6: Radial dependence of the m = 1 harmonics of B?(r) within the wall for (a)
A =0.01 cm, (b) A =0.2 cm, and (¢c) A = 0.5 cm. Note the difference in scale. Other
parameters are given in the text.
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Figure 7: Spectral density dV;,/dw of the dipole harmonics m = 1 of the azimuthal B¢
field per single beam particle.
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Figure 8: Voltage induced in the wire loop by the dipole harmonics of the azimuthal B¢
field of a single beam particle. A = 0.01 cm, other parameters are the same as in Fig.

(6).
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