781 research outputs found

    Attributes of GRB Pulses: Bayesian Blocks Analysis of TTE Data; a Microburst in GRB 920229

    Full text link
    Bayesian Blocks is a new time series algorithm for detecting localized structures (spikes or shots), revealing pulse shapes, and generally characterizing intensity variations. It maps raw counting data into a maximum likelihood piecewise constant representation of the underlying signal. This bin-free method imposes no lower limit on measurable time scales. Applied to BATSE TTE data, it reveals the shortest know burst structure -- a spike superimposed on the main burst in GRB 920229 = Trigger 1453, with rise and decay timescales ~ few 100 microseconds.Comment: 5 pages, 2 figures; presented at the 4th Huntsville Gamma-ray Burst Symposiu

    Risk of postoperative pulmonary complications in adult surgical patients with metabolic syndrome: a systematic review and meta-analysis protocol

    Get PDF
    Background: Metabolic syndrome (MetS) is defined as an accumulation of risk factors that include chronic hypertension, dyslipidaemia, insulin resistance and obesity and leads to an increased risk for diabetes, cardiovascular disease and stroke. MetS is widespread and estimated to affect up to a quarter of the global population. Patients with MetS who undergo surgery are associated with an increased risk of postoperative complications when compared with patients with a non-MetS profile. An emerging body of literature points to MetS being associated with a greater risk of postoperative pulmonary complications (PPC) in the surgical patient. PPC are associated with increased postoperative morbidity and mortality, Intensive care unit (ICU) admission, length of stay (ICU and hospital), health care costs, resource usage, unplanned re-intubation and prolonged ventilatory time. Methods/design: We will search for relevant studies in the following electronic bibliographic databases: EMBASE, MEDLINE, Cumulative Index to Nursing and Allied Health Literature (CINAHL) and Scopus as well as scan the reference lists of included studies for potential additional literature. Two authors will independently screen titles and abstracts to identify potentially relevant studies for inclusion based on predefined inclusion and exclusion criteria. The Cochrane Collaboration Review Manager (Review Manager 5) statistical software will be used to conduct this systematic review and meta-analysis and generate forest plots to demonstrate comparison of findings across studies included for meta analysis. Subgroup and sensitivity analysis will be performed to assess the heterogeneity of included studies. A descriptive synthesis of the statistical data will be provided to summarise the results and findings of the systematic review and meta-analysis. Discussion: This review will be the first to report and summarise the risk for and incidence of PPC in adult patients with MetS undergoing surgery across a range of surgical specialities. The results have the potential to inform the development of evidenced-based interventions to improve the management of PPC in the surgical patient with MetS. Findings from this systematic review and meta-analysis will inform a subsequent Delphi study on priorities and responses to PPC in patients with MetS. We will also disseminate our results through publication in scientific peerreviewed journals, conference presentations and promotion throughout our network of surgical safety champions in clinical settings

    Heterogeneity in Short Gamma-ray Bursts

    Full text link
    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of ~ 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (~ 6 x 10^-10 erg cm^-2 s^-1) is ~> 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (~ 60,000 s) is ~ 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.Comment: 30 pages, 11 figures, 3 tables; accepted to The Astrophysical Journa

    Relating Downlink Data Products to Uplink Commands

    Get PDF
    An improved data-labeling system provides for automatic association of data products of an exploratory robot (downlink information) with previously transmitted commands (uplink information) that caused the robot to gather the data. Such association is essential to correct and timely analysis of the data products -- including, for example, association of the data with the correct targets. The system was developed for use on Mars Rover missions during the next few years. The system could also be adapted to terrestrial exploratory telerobots for which delays between commands and data returns are long enough to give rise to questions as to which commands resulted in which data returns. The main advantage of this system over prior data-labeling systems is that given a downlink data product, the uplink command and sequence hierarchy that produced it are automatically provided, and given an uplink sequence and command, the downlink data products that it produced are automatically provided

    Software Supports Distributed Operations via the Internet

    Get PDF
    Multi-mission Encrypted Communication System (MECS) is a computer program that enables authorized, geographically dispersed users to gain secure access to a common set of data files via the Internet. MECS is compatible with legacy application programs and a variety of operating systems. The MECS architecture is centered around maintaining consistent replicas of data files cached on remote computers. MECS monitors these files and, whenever one is changed, the changed file is committed to a master database as soon as network connectivity makes it possible to do so. MECS provides subscriptions for remote users to automatically receive new data as they are generated. Remote users can be producers as well as consumers of data. Whereas a prior program that provides some of the same services treats disconnection of a user from the network of users as an error from which recovery must be effected, MECS treats disconnection as a nominal state of the network: This leads to a different design that is more efficient for serving many users, each of whom typically connects and disconnects frequently and wants only a small fraction of the data at any given time
    corecore