1,554 research outputs found

    Thermalization through Hagedorn states - the importance of multiparticle collisions

    Full text link
    Quick chemical equilibration times of hadrons within a hadron gas are explained dynamically using Hagedorn states, which drive particles into equilibrium close to the critical temperature. Within this scheme master equations are employed for the chemical equilibration of various hadronic particles like (strange) baryon and antibaryons. A comparison of the Hagedorn model to recent lattice results is made and it is found that for both Tc =176 MeV and Tc=196 MeV, the hadrons can reach chemical equilibrium almost immediately, well before the chemical freeze-out temperatures found in thermal fits for a hadron gas without Hagedorn states.Comment: 8 pages, 3 figures, talk presented at the International Conference on Strangeness in Quark Matter, Buzios, Rio de Janeiro, Brazil, Sept. 27 - Oct. 2, 200

    Chemical Equilibration and Transport Properties of Hadronic Matter near TcT_c

    Full text link
    We discuss how the inclusion of Hagedorn states near TcT_c leads to short chemical equilibration times of proton anti-proton pairs, KKˉK\bar{K} pairs, and ΛΛˉ\Lambda\bar{\Lambda} pairs, which indicates that hadrons do not need to be "born" into chemical equilibrium in ultrarelativistic heavy ion collisions. We show that the hadron ratios computed within our model match the experimental results at RHIC very well. Furthermore, estimates for η/s\eta/s near TcT_c computed within our resonance gas model are comparable to the string theory viscosity bound η/s=1/4π\eta/s=1/4\pi. Our model provides a good description of the recent lattice results for the trace anomaly close to Tc=196T_c=196 MeV.Comment: 4 pages, 3 figures, to appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse

    Particle Ratios as a Probe of the QCD Critical Temperature

    Full text link
    We show how the measured particle ratios can be used to provide non-trivial information about the critical temperature of the QCD phase transition. This is obtained by including the effects of highly massive Hagedorn resonances on statistical models, which are used to describe hadronic yields. The inclusion of Hagedorn states creates a dependence of the thermal fits on the Hagedorn temperature, THT_H, which is assumed to be equal to TcT_c, and leads to an overall improvement of thermal fits. We find that for Au+Au collisions at RHIC at sNN=200\sqrt{s_{NN}}=200 GeV the best square fit measure, χ2\chi^2, occurs at Tc∼176T_c \sim 176 MeV and produces a chemical freeze-out temperature of 172.6 MeV and a baryon chemical potential of 39.7 MeV.Comment: 6 pages, 4 figure

    Particle Ratios and the QCD Critical Temperature

    Full text link
    We show how the measured particle ratios at RHIC can be used to provide non-trivial information about the critical temperature of the QCD phase transition. This is obtained by including the effects of highly massive Hagedorn resonances on statistical models, which are used to describe hadronic yields. Hagedorn states are relevant close to TcT_c and have been shown to decrease η/s\eta/s to the KSS limit and allow for quick chemical equilibrium times in dynamical calculations of hadrons. The inclusion of Hagedorn states creates a dependence of the thermal fits on the Hagedorn temperature, THT_H, which is assumed to be equal to TcT_c, and leads to an overall improvement of thermal fits. We find that for Au+Au collisions at RHIC at sNN=200\sqrt{s_{NN}}=200 GeV the best square fit measure, χ2\chi^2, occurs at Tc∼176T_c \sim 176 MeV and produces a chemical freeze-out temperature of 170.4 MeV and a baryon chemical potential of 27.8 MeV.Comment: 6 pages, 2 figures, talk presented at the International Conference on Strangeness in Quark Matter, Buzios, Rio de Janeiro, Brazil, Sept. 27 - oct. 2, 200

    On duality of the noncommutative extension of the Maxwell-Chern-Simons model

    Full text link
    We study issues of duality in 3D field theory models over a canonical noncommutative spacetime and obtain the noncommutative extension of the Self-Dual model induced by the Seiberg-Witten map. We apply the dual projection technique to uncover some properties of the noncommutative Maxwell-Chern-Simons theory up to first-order in the noncommutative parameter. A duality between this theory and a model similar to the ordinary self-dual model is estabilished. The correspondence of the basic fields is obtained and the equivalence of algebras and equations of motion are directly verified. We also comment on previous results in this subject.Comment: Revtex, 9 pages, accepted for publication PL

    On the dimensional dependence of duality groups for massive p-forms

    Get PDF
    We study the soldering formalism in the context of abelian p-form theories. We develop further the fusion process of massless antisymmetric tensors of different ranks into a massive p-form and establish its duality properties. To illustrate the formalism we consider two situations. First the soldering mass generation mechanism is compared with the Higgs and Julia-Toulouse mechanisms for mass generation due to condensation of electric and magnetic topological defects. We show that the soldering mechanism interpolates between them for even dimensional spacetimes, in this way confirming the Higgs/Julia-Toulouse duality proposed by Quevedo and Trugenberger \cite{QT} a few years ago. Next, soldering is applied to the study of duality group classification of the massive forms. We show a dichotomy controlled by the parity of the operator defining the symplectic structure of the theory and find their explicit actions.Comment: Reference [8] has been properly place

    Jet Quenching in Non-Conformal Holography

    Full text link
    We use our non-conformal holographic bottom-up model for QCD described in 1012.0116 to further study the effect of the QCD trace anomaly on the energy loss of both light and heavy quarks in a strongly coupled plasma. We compute the nuclear modification factor RAAR_{AA} for bottom and charm quarks in an expanding plasma with Glauber initial conditions. We find that the maximum stopping distance of light quarks in a non-conformal plasma scales with the energy with a temperature (and energy) dependent effective power.Comment: 4 pages, 1 figure. Proceedings for Quark Matter 201
    • …
    corecore