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Abstract

We study the soldering formalism in the context of Abelianp-form theories. We develop further the fusion process
massless antisymmetric tensors of different ranks into a massivep-form and establish its duality properties. To illustrate
formalism we consider two situations. First the soldering mass generation mechanism is compared with the Higgs a
Toulouse mechanisms for mass generation due to condensation of electric and magnetic topological defects. We
the soldering mechanism interpolates between them for even-dimensional spacetimes, in this way confirming the Hig
Toulouse duality proposed by Quevedo and Trugenberger [Nucl. Phys. B 501 (1997) 143] a few years ago. Next, so
applied to the study of duality group classification of the massive forms. We show a dichotomy controlled by the parit
operator defining the symplectic structure of the theory and find their explicit actions.
 2003 Published by Elsevier Science B.V. Open access under CC BY license.
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The study of duality transformation has had stro
impact over different areas of physics—from Strin
to Condensed Matter—with particular emphasis in
masslessp-form electromagnetic theory. Indeed d
ality operation and self-dual actions were thoroug
studied in the context of massless four-dimensio
electromagnetic theory and its even-dimensio
p-form extensions [2,3]. However, a similar study
the context of massive Abelianp-forms has attracte
little interest [1,4] which prompts us to present this
vestigation. We bring about a study that extends b
the notion of duality symmetry to massive totally a
tisymmetric tensors of arbitrary ranks and the not
of self-duality. Consequences of the present anal
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to topological mass generation and duality group c
sification will be presented.

The ubiquitous role of the duality operation in t
investigation of concrete physical systems is by n
well recognized [5]. This is a symmetry transform
tion that is fundamental for investigations in aren
as distinct as quantum field theory, statistical mech
ics and string theory. Establishing a duality means
one has two equivalent mathematical description of
same physical phenomenon in terms of different fie
Duality is a general concept relating physical qua
ties in different regions of the parameter space. It
lates a model in a strong coupling regime to its d
version working in a weak coupling regime, providi
valuable information in the study of strongly intera
ing models. The instance of electromagnetic-like s
duality present inD = 4k+2 dimensions has attracte
 BY license.

http://www.elsevier.com/locate/npe
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


164 J.L. Noronha et al. / Physics Letters B 564 (2003) 163–168

tant

n-
con-
ob-
.

he
ll

hey
the
an
es
is
de-
hat
the

n
thor
lity
ur-
if-
za-
n

nt,
ems
nd
eads
The

ity

a

at

hile

old
en

cal
or
f a
ace
al

ality

es
has

act

po-
ism

r [1]
een
for
et-

e-

ed
gy
. It
ads
he
a

ed
ion
gy
ons
Tru-
ag-

he
edo
, the

ire a
,

much attention because it seems to play an impor
role in many theoretical models [6].

It is important to mention that antisymmetric te
sor gauge theories have attracted much interest in
structing gauge theories of elementary extended
jects (strings, membranes, . . .) in recent years [7,8]
An antisymmetric tensor of rank(p + 1) couples to
elementaryp-branes, a natural generalization of t
coupling of the vector potential one-form in Maxwe
theory to elementary point-particles (0-branes). T
also appear naturally in effective field theories for
low-energy dynamics of strings where they play
important role in the realization of various dualiti
among different theories [9]. The study of dualities
becoming more and more important due to recent
velopments in string theory, where it was shown t
inequivalent vacua are related by dualities based on
existence of extended objects, the D-branes [10].

For masslessp-forms duality group classificatio
and mass generation mechanisms have not been
oughly studied. Indeed the dependence of dua
with dimensionality appears to be crucial. The c
rent status is as follows. The distinction among d
ferent dimensions is manifest by the double duali
tion operation following from the identities, valid i
Minkowskian spacetimes

(1)∗∗F =
{+F, if D = 4k + 2,

−F, if D = 4k,

where∗ denotes the usual Hodge operation andF is a
D/2-form. This leads to two, apparently independe
consequences. First, the concept of self-duality se
to be well defined only in twice odd dimensions, a
not present in the twice even cases. Second, (1) l
to separate outcomes regarding the duality groups.
invariance of the action in differentD dimensions is
preserved by the following groups,

(2)Gd =
{
Z2, if D = 4k + 2,
SO(2), if D = 4k,

which were coined as “duality groups”. The dual
operation is characterized by an one-parameterSO(2)
group of symmetry inD = 4k dimensions, while
for D = 4k + 2 dimensions it is manifest by
discreteZ2 operation. TheZ2 is a discrete group
with two elements. This led to the prejudice th
only the 4-dimensional Maxwell theory and its 4k

extensions would possess duality as a symmetry, w
-

for the 2-dimensional scalar theory and its 4k + 2
extensions duality is not even definable. This two-f
dependence of duality with dimensionality has be
clarified by algebraic methods [2], and its physi
origin disclosed by the soldering [3]. The solution f
these problems came, first with the recognition o
2-dimensional internal structure hidden in the sp
of potentials [2,3,11]. Transformations in this intern
duality space have extended the concept of self du
to all even dimensions. In theD = 4 the explicitly
self-dual Maxwell theory is known under the nam
of Schwarz and Sen but this deep unifying concept
also been appreciated by others [2,11].

The investigation of mass generation for comp
antisymmetric tensors of arbitrary ranks inD = d + 1
dimensions, coupled to magnetic and electric to
logical defects, due to some condensation mechan
has been tackled by Quevedo and Trugenberge
that also established an interesting duality betw
the Higgs and the Julia–Toulouse mechanisms
even-dimensional spacetime. In compact antisymm
ric field theoriesp-branes appear as topological d
fects of the original theory. While electric(p − 1)-
branes coupled minimally with the originalp-forms,
the magnetic(d − p)-branes can be viewed as clos
singularities (Dirac strings). The effective, low-ener
field theory, is then valid outside these singularities
is known that topological defects condensation le
to drastic modifications of the infrared behavior of t
original theory [8,12]. There is a new phase with
continous distribution of topological defects describ
by a low-energy effective action—the condensat
of topological defects gives rise to new low-ener
modes representing the long-wavelength fluctuati
about the homogeneous condensate. Quevedo and
genberger have shown that, in the presence of a m
netic defect described by a Dirac stringψ(0)

p , a mass-

less Abelian(p − 1)-form φ
(0)
p−1 interpolates into a

massive(p)-form ψ
(m)
p in the condensed phase of t

magnetic defect. In this process, coined by Quev
and Trugenberger as Julia–Toulouse mechanism
degrees of freedom of the Abelian(p − 1)-form are
incorporated by the magnetic condensate to acqu
mass proportional to the density of the condensate

(3)φ
(0)
p−1 → ψ(m)

p = φ
(0)
p−1 ⊕ψ(0)

p .
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This is quite distinct from the Higgs mechanism whe
the originalU(1) massless tensorφ(0)

p acquires the

degrees of freedom of the Higgs condensate, sayΣ
(0)
p−1

to become massive,

(4)φ(0)
p → φ(m)

p = φ(0)
p ⊕ Σ

(0)
p−1.

When the topological defects have the same dim
sionality, Higgs and Julia–Toulouse phases are
scribed by tensors of the same rank this way es
lishing a duality between these two mechanisms [1

Alternatively, one of us and collaborators [3
have developed a systematic method for the stud
mass generation and different aspects of duality,
embraces all ranks and dimensions. It contains
basic elements; a point contact transformation
the soldering formalism that operates in the inter
space [13]. The mass generation is a consequen
the fusion of distinct fields and has been establis
in some special examples [14]. The soldering may
summarized by the following scheme,

(5)A(0)
p → A(m)

p = A(0)
p ⊕B(0)

q

if the ranksp andq of the massless fieldsA(0)
p and

B
(0)
q satisfy a massive duality condition:p + q = d .
In another direction, the ability of the formalis

to distinguish among different group structures of
duality transformation is traceable to the dimensio
dependence of the parity property of a differential o
erator (a generalizednon-covariant curl) that solves
the Gauss law of the massless components. The
ity’s dimensional dependence of the operator sel
the proper symmetry in the symplectic sector of
theory while the Hamiltonian, being quadratically d
pendent on the operator does not differentiate betw
the two cases. It is crucial to note that this proced
produces two distinct classes of dual theories cha
terized by the opposite signatures of the(2× 2) matri-
ces in the internal space. These actions correspon
self-dual and antiself-dual representations of the o
inal theory. An interesting duality between these du
ity symmetric actions has been reported recently [1

In this work we study the soldering of arbitra
massless antisymmetric tensors leading to a new, m
sive antisymmetric form. The duality transformati
properties for this massive form is then studied fr
this point of view. We show that for massivep-forms
in odd-dimensional spacetime there is a dichoto
f

-

-

that very much resemble the analogous situation of
case of masslessp-forms in even-dimensional spac
times. The duality groups are eitherZ2 or SO(2) ac-
cording to the dimension of the spacetime beingD =
3 mod(4) or D = 5 mod(4), respectively. For the lat
ter there is an one-parameter continuousSO(2) invari-
ance for the potentials in the internal space while
the former there is aZ2 property that is not imple
mentable as a canonical transformation but posse
self-dual form that is absent from other case. We sh
that for massivep-form case it is the parity depen
dence on dimensionality of a (covariant) generalized
curl that selects between anSO(2) or aZ2 structure for
the theory. However, the physical origin of the ope
tor carrying this property is different since there is
Gauss law to restrict the space of states. In the ana
that follows we use thecovariant version of the dual-
projection technique developed in [3], that has pro
to be adequate to disclose duality and self-duality
the context Maxwell-like masslessp-forms, to deal
with the duality group dimensional dependence pr
lem for massivep-forms. This technique is based o
the doubling of the space of potentials in order to m
duality an explicit symmetry by creating an intern
space of potentials. Unlike the algebraic or group t
oretical methods, this technique is applicable to b
even and odd dimensions as well as massless and
sivep-forms therefore allowing this investigation.

Let us consider a massivep-form theory (basically
a D-dimensional Proca-like model) whose action
defined as,

Sm
p =

〈
(−1)p(D − p − 1)!

2(p + 1)! H 2
p+1(Ap)

(6)+ (−1)p+1m
2

2
A2

p

〉
,

where〈· · ·〉 means spacetime integration and we ad
a simplified notation that goes as follows—Ap ≡
Aµ1···µp represents ap-form and

(7)Hp+1(Ap) = ∂[µ1Aµ2···µp+1],
denotes its field tensor. We use the following me
gµν = diag(+,−, . . . ,−). After the elimination of the
redundant variables using the constraints this mo
displays a total of

(
D−1
p

)
degrees of freedom. Makin

use of the identity

(8)εpqε
pq̃ = (−1)D+1p!δq̃[q]
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9)
with

(9)δ
q̃
[q] ≡ δ

µ̃1[µ1
· · · δµ̃q

µq ],

the action for the massive theory may be rewritten
a first-order form with the introduction of an auxilia
field

(10)

Sm
p =

〈
Πqε∂Ap − (−1)q

2
Π2

q + (−1)p+1m
2

2
A2

p

〉
.

We shall denote the first term in this action as
“covariant symplectic sector” and the remaining of t
action as the symplectic potential or just potential
short [16]. HereΠq is aq-form auxiliary field and

(11)Πqε∂Ap = εµ1···µqαµ1···µpΠµ1···µq ∂αAν1···νp .
This brings naturally the generalized-curl opera
(ε∂) into the (covariant) symplectic sector of the
action. This is unlike the case of masslessp-forms
where the (non-covariant) curl operator was brough
into the symplectic part of the action as the result
the solution of the Gauss law. A further relabeling a

(12)Πq = mBq

and a simultaneous duality transformation of bothAp

andBq [17] will rephrase the action as

Seff =
〈
(−1)p

1

8

p!
(q + 1)!H

2
q+1(Bq)

(13)

+ (−1)q
1

8

q!
(p + 1)!F

2
p+1(Ap)−mBqε∂Ap

〉
,

which we recognize as aB ∧ F type theory.
It is interesting, at this juncture, to compare t

field contents of the soldering analysis with the m
generation coming from the Higgs and the Jul
Toulouse mechanism. By inspection, we see:

• Higgs/soldering

(14)Σ
(0)
p−1 = ∗(Bq);

• Julia–Toulouse/soldering

(15)φ
(0)
p−1 = ∗(Bq),

where∗ here is the massless duality operation, cha
terized by

(16)αp = ∗βq
if p + q = d − 1. Therefore, in order to identify th
fields we need the condition,p − 1= q = d − p or,
equivalently, 2p = d + 1 = D, that is the Quevedo
Trugenberger condition for the Higgs/Julia–Toulou
duality, to hold. The fieldBq therefore interpolates be
tween the original Abelian form in the Julia–Toulou
condensation to the Higgs condensate in the Hi
mechanism.

Next, let us consider the classification of the dua
group structure induced by the soldering analy
Notice that the conditionp = q must hold for self-
duality be manifest. This establishes the connec
between the tensorial rank and spacetime dimensi

(17)D = 2p + 1,

so that only odd-dimensional manifolds are prone
display self-duality. To recognize, among the odd
mensions, those displaying theZ2 structure character
istic of the self-duality and those carrying theSO(2)
invariance, a field redefinition that rearranges the (co-
variant) symplectic sector of the action (10) is impl
mented. Therefore, let us write

Ap = (
A+

p +A−
p

)
,

(18)Πp = ηm
(
A+

p −A−
p

)
,

with η = ± being the signature of the canonic
transformation, and bring this redefinition back in
the action (10) to obtain

Sm
p =

〈
ηm

[(
A+

p ε∂A
+
p −A−

p ε∂A
−
p

)
+ (

A+
p ε∂A

−
p −A−

p ε∂A
+
p

)]
(19)+ (−1)p+1m2[(A+

p

)2 + (
A−

p

)2]〉
.

The parity of the generalized-curl is defined as

(20)〈Apε∂Bq〉 =P(ε∂)〈Bqε∂Ap〉
and its dependence on the rank of thep- andq-forms,
or dimensionality is given by

(21)

P(ε∂) = (−1)(p+1)(q+1)

... limit q → p

= (−1)
D+1

2 .

Therefore, for the self-dual case (p = q) we iden-
tify the first term in the symplectic sector of (1
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as the one displaying theZ2 aspect while the sec
ond term displaysSO(2) invariance. The presence
both structures, simultaneously, in the action is, ho
ever, illusory. In those dimensions where one str
ture is clearly present the other is a total derivat
and vice versa, this being a consequence of the de
dence of the operator’s parity (21) on dimensional
It is clear then that theZ2 structure survives when
everD = 3 + 4k but is absent forD = 5 + 4k when
theSO(2) structure takes over. Therefore, for the fi
case,D = 3 mod(4)

(22)Sm
p → S+

p

(
A+

p

) + S−
p

(
A−

p

)
,

where

(23)S±
p = 〈±ηmA±

p ε∂A
±
p − (−1)pm2(A±

p

)2〉
while for the latter,D = 5 mod(4), the action become

(24)Sm
p → 〈

ηmAα
pε

αβε∂Aβ
p − (−1)pm2(Aα

p

)2〉
,

whereAα
p = A±

p andε+− = 1. Due to the diagonal
ization imposed by theZ2 structure each one of th
actions in (22) carries one-half the total number
degrees of freedom but in theSO(2) case there is no
such a decomposition so that all degrees of freed
in the action in (24) are entangled out. Observe t
the self-dual structure inherent to (22) is obtained
rectly from (10) imposing the second-class constra
of self-duality

(25)Πp = ±mAp,

therefore reducing to half the number of degrees
freedom. This generalizes toD = 3 mod(4) the self-
dual construction of [18] which is known to be th
massive analogous to the selfdual scalar propose
Floreanini and Jackiw [19] inD = 2. TheSO(2) in-
variant model in (24) resembles the model propo
by Schwarz and Sen in their study of duality for ma
less electromagnetic-like actions. As far as we kn
the massive action analogous of the Schwarz–Sen
tion has not been proposed before. Although, beca
of the signatureη we have two possibilities for th
action in (24) (in (23)η has no consequences) th
should not be confused with the two chiral-like pr
jections obtained from (25) leading to the two actio
in (23). Indeed, while forD = 3 + 4k the symplectic
sector breaks into two disconnected pieces, each c
ing half the number of degrees of freedom, the the
-

living in D = 5+ 4k is just reorganized into anSO(2)
like structure but there is no reduction of the “cova
ant phase space”.

In summary, we have studied the soldering o
masslessp-form A

(0)
p with an also masslessq-form

B
(0)
q satisfying the massive duality conditionp +

q = d . We have shown that as a consequence of
dering, a massive antisymmetric tensor appears. C
parison of this mass generation mechanism with b
Higgs and Julia–Toulouse condensation approac
shows that it interpolates between them if the Que
do–Trugenberger condition is satisfied. This gives
alternative point of view in the Higgs/confinement d
ality and sheds light in the meaning of the solder
mass generation.

With regard to the duality group classificatio
we have studied the structure of the duality grou
for massivep-forms and disclosed its dimension
dependence. We found that it is the dimensio
dependence of the parity property of a generali
curl-operator, used in the reduction of the action
first-order, the responsible for the selection of
proper sector of thecovariant symplectic part of
the action. This is the sector presenting dimensio
dependence since the potential, being quadratic
dependent on the curl-operator is not sensible
this property. A similar situation also happens
the massless case. There however it was the par
dependence on dimensionality of thenon-covariant
generalized curl, coming from the resolution of t
Gauss constraint, the property selecting the gr
commanding sector of the action.

We found that forD = 5 mod(4) the theory is
SO(2) invariant while forD = 3 mod(4) it is sym-
metric under the interchange of its self and antis
dual components but it has no generators. This c
acterization of the massive modes in odd dimensi
completes the table of duality transformations
electromagnetic-likep-forms. It displays an intriguing
sequence of doublets ofZ2 and SO(2) for massless
and massive theories in alternating even and odd
mensions starting with the former, i.e.,Z2 for D = 2,3
andSO(2) for D = 4,5 and so on. These features a
illustrate in Table 1.

The connection, by dimensional reduction, prese
ing the symmetry group, between the SD mode
D = 3 and the Schwinger model inD = 2 is well
known [20]. We have also found a non-preserv
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Table 1

Dimensions Massive Massless Rank Degrees of free

13 SO(2) 6 924
12 SO(2) 5 252
11 Z2 5 252
10 Z2 4 70
9 SO(2) 4 70
8 SO(2) 3 20
7 Z2 3 20
6 Z2 2 6
5 SO(2) 2 6
4 SO(2) 1 2
3 Z2 1 2
2 Z2 0 1

symmetry connection, by dimensional reduction, fr
D = 6 toD = 4 and fromD = 4 toD = 2 in the mass-
less case and fromD = 5 toD = 3 in the massive cas
very much in the line of [21] and hope to extend th
connection to all the dimensions and symmetry gro
in a future work through dimensional reduction tec
nique [22].

Finally, as the result of the analysis developed
the present Letter, we found new actions for mass
p-forms carrying explicitly theZ2 andSO(2) symme-
tries. For the first case we found all the dimensio
extensions of theD = 3 action proposed by Townsen
Pilch and van Nieuwenhuizen [18] while the actio
found here to carrySO(2) symmetry, in any dimen
sion, are new results.
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