57 research outputs found

    Quadrotor UAV indoor localization using embedded stereo camera

    Get PDF
    Localization of Small-Size Unmanned Air Vehicles (UAVs) such as the Quadrotors in Global Positioning System (GPS)-denied environment such as indoors has been done using various techniques. Most of the experiment indoors that requires localization of UAVs, used cameras or ultrasonic sensors installed indoor or applied indoor environment modification such as patching (Infra Red) IR and visual markers. While these systems have high accuracy for the UAV localization, they are expensive and have less practicality in real situations. In this paper a system consisting of a stereo camera embedded on a quadrotor UAV (QUAV) for indoor localization was proposed. The optical flow data from the stereo camera then are fused with attitude and acceleration data from our sensors to get better estimation of the quadrotor location. The quadrotor altitude is estimated using Scale Invariant Feature Transform (SIFT) Feature Stereo Matching in addition to the one computed using optical flow. To avoid latency due to computational time, image processing and the quadrotor control are processed threads and core allocation. The performance of our QUAV altitude estimation is better compared to single-camera embedded QUAVs due to the stereo camera triangulation, where it leads to better estimation of the x-y position using optical flow when fused together

    Direct Profiling of Phytochemicals in Tulip Tissues and In Vivo Monitoring of the Change of Carbohydrate Content in Tulip Bulbs by Probe Electrospray Ionization Mass Spectrometry

    Get PDF
    Probe electrospray ionization (PESI) is a recently developed ESI-based ionization technique which generates electrospray from the tip of a solid needle. In this study, we have applied PESI interfaced with a time of flight mass spectrometer (TOF-MS) for direct profiling of phytochemicals in a section of a tulip bulb in different regions, including basal plate, outer and inner rims of scale, flower bud and foliage leaves. Different parts of tulip petals and leaves have also been investigated. Carbohydrates, amino acids and other phytochemicals were detected. A series of in vivo PESI-MS experiments were carried out on the second outermost scales of four living tulip bulbs to monitoring the change of carbohydrate content during the first week of initial growth. The breakdown of carbohydrates was observed which was in accordance with previous reports achieved by other techniques. This study has indicated that PESI-MS can be used for rapid and direct analysis of phytochemicals in living biological systems with advantages of low sample consumption and little sample preparation. Therefore, PESI-MS can be a new choice for direct analysis/profiling of bioactive compounds or monitoring metabolic changes in living biological systems

    On-site single pollen metabolomics reveals varietal differences in phosphatidylinositol synthesis under heat stress conditions in rice

    Get PDF
    Although a loss of healthy pollen grains induced by metabolic heat responses has been indicated to be a major cause of heat-induced spikelet sterility under global climate change, to date detailed information at pollen level has been lacking due to the technical limitations. In this study, we used picolitre pressure-probe-electrospray-ionization mass spectrometry (picoPPESI-MS) to directly determine the metabolites in heat-treated single mature pollen grains in two cultivars, heat-tolerant cultivar, N22 and heat-sensitive cultivar, Koshihikari. Heat-induced spikelet fertility in N22 and Koshihikari was 90.0% and 46.8%, respectively. While no treatment difference in in vitro pollen viability was observed in each cultivar, contrasting varietal differences in phosphatidylinositol (PI)(34:3) have been detected in mature pollen, together with other 106 metabolites. Greater PI content was detected in N22 pollen regardless of the treatment, but not for Koshihikari pollen. In contrast, there was little detection for phosphoinositide in the single mature pollen grains in both cultivars. Our findings indicate that picoPPESI-MS analysis can efficiently identify the metabolites in intact single pollen. Since PI is a precursor of phosphoinositide that induces multiple signaling for pollen germination and tube growth, the active synthesis of PI(34:3) prior to germination may be closely associated with sustaining spikelet fertility even at high temperatures.Fil: Wada, Hiroshi. Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization; JapónFil: Hatakeyama, Yuto. Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization; JapónFil: Nakashima, Taiken. Hokkaido University; JapónFil: Nonami, Hiroshi. Ehime University; JapónFil: Erra Balsells, Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Hakata, Makoto. Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization; JapónFil: Nakata, Keisuke. Ehime University; JapónFil: Hiraoka, Kenzo. University Of Yamanashi; JapónFil: Onda, Yayoi. Ehime University; JapónFil: Nakano, Hiroshi. Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization; Japó

    リアルタイム振動解析手法を用いた薄鋼板センサレス支持制御

    No full text

    Discrete Time Frequency-Shaped Preview Sliding Mode Control with Pre-Filter for a Hydraulic Manipulator

    No full text

    Controlled Metal Detector Mounted on Mine Detection Robot

    No full text
    Landmine detection capability of metal detectors is very sensitive to the gap between buried landmines and the sensor heads. Therefore, human deminers manually scan ground surface with the metal detectors in such a manner that the sensor heads follow the ground surface. In case of robots assisted landmine detection, this function can be performed accurately and safely by controlling the gap and attitude of the sensor heads. In this investigation, the effectiveness of the gap and attitude control of the sensor head by some mechanical manipulator on the landmine detection performance has been addressed quantitatively. To this end, the paper describes the development of a Controlled Metal Detector (CMD) for controlling the gap and attitude of the sensor head. The CMD generates trajectories of the sensor head from the depth information of the ground surface acquired with 3-D stereovision camera in order to avoid any obstacles and possible impact with the ground, and then tracks the trajectories with a trajectory-tracking controller. The effectiveness and the impact related to the gap and attitude control on the landmine detection performance of the CMD have been demonstrated by experimental studies

    Autonomous Control of Dual-Arm Robot with Multibody Dynamics and Stereo Camera

    No full text

    Controlled Metal Detector Mounted on Mine Detection Robot

    No full text
    Landmine detection capability of metal detectors is very sensitive to the gap between buried landmines and the sensor heads. Therefore, human deminers manually scan ground surface with the metal detectors in such a manner that the sensor heads follow the ground surface. In case of robots assisted landmine detection, this function can be performed accurately and safely by controlling the gap and attitude of the sensor heads. In this investigation, the effectiveness of the gap and attitude control of the sensor head by some mechanical manipulator on the landmine detection performance has been addressed quantitatively. To this end, the paper describes the development of a Controlled Metal Detector (CMD) for controlling the gap and attitude of the sensor head. The CMD generates trajectories of the sensor head from the depth information of the ground surface acquired with 3D stereovision camera in order to avoid any obstacles and possible impact with the ground, and then tracks the trajectories with a trajectory-tracking controller. The effectiveness and the impact related to the gap and attitude control on the landmine detection performance of the CMD have been demonstrated by experimental studies
    corecore