997 research outputs found
Recommended from our members
Effect of an Office-Based Surgical Safety System on Patient Outcomes
Objective: To implement a customizable checklist in an interdisciplinary, team-based plastic surgery setting to reduce surgical complications. Methods: We examined the effects on patient outcomes and documentation of a customizable, office-based surgical safety checklist. On the basis of the World Health Organization Surgical Safety Checklist, we developed a 28-element, perioperative checklist for use in the office-based surgical setting. The checklist was implemented in an office-based plastic surgery practice with an already high standard of care. We recorded baseline, prechecklist rates for each checklist item and postoperative adverse outcomes via a retrospective chart review of 219 cases. After an education program and 30-day run-in period, a prospective, post–checklist implementation chart review was initiated (n = 184), with outcome data compared to the baseline. Results: The total number of complications per 100 patients decreased from 15.1 to 2.72 after checklist implementation (P < .0001), for an absolute risk reduction of 12.4. The proportion of patients with one or more complications decreased from 11.9% to 2.72% (P = .0006). Site and side marking increased from 69.9% prechecklist to 97.8% (P < .0001). Medical optimization increased from 90.9% to 99.5% (P < .0001). Emergency medical services (EMS) policy confirmation, case-specific equipment availability, anticipation of estimated blood loss, and verbal confirmation of local anesthetic toxicity precautions increased from 0% to 90.0% (P < .0001), 92.4% (P < .0001), 82.1% (P < .0001), and 91.3% (P < .0001), respectively. Assessment of patient satisfaction increased from 57.1% to 90.8% (P < .0001). Conclusions: Implementation of a customizable checklist was associated with a reduction in surgical complications in an office-based plastic surgery practice with an already high standard of care
Feasibility of a Networked Air Traffic Infrastructure Validation Environment for Advanced NextGen Concepts
Abstract-Next Generation Air Transportation System (NextGen) applications reliant upon aircraft data links such as Automatic Dependent Surveillance-Broadcast (ADS-B) offer a sweeping modernization of the National Airspace System (NAS), but the aviation stakeholder community has not yet established a positive business case for equipage and message content standards remain in flux. It is necessary to transition promising Air Traffic Management (ATM) Concepts of Operations (ConOps) from simulation environments to full-scale flight tests in order to validate user benefits and solidify message standards. However, flight tests are prohibitively expensive and message standards for Commercial-off-the-Shelf (COTS) systems cannot support many advanced ConOps. It is therefore proposed to simulate future aircraft surveillance and communications equipage and employ an existing commercial data link to exchange data during dedicated flight tests. This capability, referred to as the Networked Air Traffic Infrastructure Validation Environment (NATIVE), would emulate aircraft data links such as ADS-B using in-flight Internet and easily-installed test equipment. By utilizing low-cost equipment that is easy to install and certify for testing, advanced ATM ConOps can be validated, message content standards can be solidified, and new standards can be established through full-scale flight trials without necessary or expensive equipage or extensive flight test preparation. This paper presents results of a feasibility study of the NATIVE concept. To determine requirements, six NATIVE design configurations were developed for two NASA ConOps that rely on ADS-B. The performance characteristics of three existing in-flight Internet services were investigated to determine whether performance is adequate to support the concept. Next, a study of requisite hardware and software was conducted to examine whether and how the NATIVE concept might be realized. Finally, to determine a business case, economic factors were evaluated and a preliminary cost-benefit analysis was performed
Report on the May-June 2002 Englebright Lake deep coring campaign
This report describes the May-June 2002 Englebright Lake coring project. Englebright Lake is a 14-km-long reservoir on the Yuba River of northern California, impounded by Englebright Dam, which was completed in 1940. The sediments were cored to assess the current conditions in the reservoir as part of the California Bay-Delta Authority’s Upper Yuba River Studies Program. Sediment was collected using both hydraulic-piston and rotational coring equipment mounted on a floating drilling platform. Thirty boreholes were attempted at 7 sites spaced along the longitudinal axis of the reservoir. Complete sedimentary sections were recovered from 20 boreholes at 6 sites. In total, 335 m of sediment was cored, with 86% average recovery. The core sections (each up to 1.5 m long) were processed using a standard set of laboratory techniques, including geophysical logging of physical properties, splitting, visual descriptions, digital photography, and initial subsampling. This report presents the results of these analyses in a series of stratigraphic columns. Using the observed stratigraphy as a guide, several series of subsamples were collected for various sedimentologic, geochemical, and geochronological analyses. The results of laboratory analyses of most of these subsamples will be presented in future reports and articles
Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province
The end-Triassic extinction is characterized by major losses in both terrestrial and marine diversity, setting the stage for dinosaurs to dominate Earth for the next 136 million years. Despite the approximate coincidence between this extinction and flood basalt volcanism, existing geochronologic dates have insufficient resolution to confirm eruptive rates required to induce major climate perturbations. Here, we present new zircon uranium-lead (U-Pb) geochronologic constraints on the age and duration of flood basalt volcanism within the Central Atlantic Magmatic Province. This chronology demonstrates synchroneity between the earliest volcanism and extinction, tests and corroborates the existing astrochronologic time scale, and shows that the release of magma and associated atmospheric flux occurred in four pulses over about 600,000 years, indicating expansive volcanism even as the biologic recovery was under way
Feasibility of a Networked Air Traffic Infrastructure Validation Environment for Advanced NextGen Concepts
Abstract-Next By utilizing low-cost equipment that is easy to install and certify for testing, advanced ATM ConOps can be validated, message content standards can be solidified, and new standards can be established through full-scale flight trials without necessary or expensive equipage or extensive flight test preparation. This paper presents results of a feasibility study of the NATIVE concept. To determine requirements, six NATIVE design configurations were developed for two NASA ConOps that rely on ADS-B. The performance characteristics of three existing inflight Internet services were investigated to determine whether performance is adequate to support the concept. Next, a study of requisite hardware and software was conducted to examine whether and how the NATIVE concept might be realized. Finally, to determine a business case, economic factors were evaluated and a preliminary cost-benefit analysis was performed
Protecting climate with forests
Policies for climate mitigation on land rarely acknowledge biophysical factors, such as reflectivity, evaporation, and surface roughness. Yet such factors can alter temperatures much more than carbon sequestration does, and often in a conflicting way. We outline a framework for examining biophysical factors in mitigation policies and provide some best-practice recommendations based on that framework. Tropical projects-avoided deforestation, forest restoration, and afforestation-provide the greatest climate value, because carbon storage and biophysics align to cool the Earth. In contrast, the climate benefits of carbon storage are often counteracted in boreal and other snow-covered regions, where darker trees trap more heat than snow does. Managers can increase the climate benefit of some forest projects by using more reflective and deciduous species and through urban forestry projects that reduce energy use. Ignoring biophysical interactions could result in millions of dollars being invested in some mitigation projects that provide little climate benefit or, worse, are counter-productive
Development of a peer support intervention to encourage dietary behaviour change towards a Mediterranean diet in adults at high cardiovascular risk.
BACKGROUND: Mediterranean diet (MD) interventions are demonstrated to significantly reduce cardiovascular disease (CVD) risk but are typically resource intensive and delivered by health professionals. There is considerable interest to develop interventions that target sustained dietary behaviour change and that are feasible to scale-up for wider public health benefit. The aim of this paper is to describe the process used to develop a peer support intervention to encourage dietary behaviour change towards a MD in non-Mediterranean adults at high CVD risk. METHODS: The Medical Research Council (MRC) and Behaviour Change Wheel (BCW) frameworks and the COM-B (Capability, Opportunity, Motivation, Behaviour) theoretical model were used to guide the intervention development process. We used a combination of evidence synthesis and qualitative research with the target population, health professionals, and community health personnel to develop the intervention over three main stages: (1) we identified the evidence base and selected dietary behaviours that needed to change, (2) we developed a theoretical basis for how the intervention might encourage behaviour change towards a MD and selected intervention functions that could drive the desired MD behaviour change, and (3) we defined the intervention content and modelled outcomes. RESULTS: A theory-based, culturally tailored, peer support intervention was developed to specifically target behaviour change towards a MD in the target population. The intervention was a group-based program delivered by trained peer volunteers over 12-months, and incorporated strategies to enhance social support, self-efficacy, problem-solving, knowledge, and attitudes to address identified barriers to adopting a MD from the COM-B analysis. CONCLUSIONS: The MRC and BCW frameworks provided a systematic and complementary process for development of a theory-based peer support intervention to encourage dietary behaviour change towards a MD in non-Mediterranean adults at high CVD risk. The next step is to evaluate feasibility, acceptability, and diet behaviour change outcomes in response to the peer support intervention (change towards a MD and nutrient biomarkers) using a randomized controlled trial design
An expanded evaluation of protein function prediction methods shows an improvement in accuracy
Background: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. Results: We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. Conclusions: The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent. Keywords: Protein function prediction, Disease gene prioritizationpublishedVersio
- …