1,055 research outputs found
Numerical simulations of neutron star-black hole binaries in the near-equal-mass regime
Simulations of neutron star-black hole (NSBH) binaries generally consider
black holes with masses in the range , where we expect to find
most stellar mass black holes. The existence of lower mass black holes,
however, cannot be theoretically ruled out. Low-mass black holes in binary
systems with a neutron star companion could mimic neutron star-neutron (NSNS)
binaries, as they power similar gravitational wave (GW) and electromagnetic
(EM) signals. To understand the differences and similarities between NSNS
mergers and low-mass NSBH mergers, numerical simulations are required. Here, we
perform a set of simulations of low-mass NSBH mergers, including systems
compatible with GW170817. Our simulations use a composition and temperature
dependent equation of state (DD2) and approximate neutrino transport, but no
magnetic fields. We find that low-mass NSBH mergers produce remnant disks
significantly less massive than previously expected, and consistent with the
post-merger outflow mass inferred from GW170817 for moderately asymmetric mass
ratio. The dynamical ejecta produced by systems compatible with GW170817 is
negligible except if the mass ratio and black hole spin are at the edge of the
allowed parameter space. That dynamical ejecta is cold, neutron-rich, and
surprisingly slow for ejecta produced during the tidal disruption of a neutron
star : . We also find that the final mass of the remnant
black hole is consistent with existing analytical predictions, while the final
spin of that black hole is noticeably larger than expected -- up to for our equal mass case
Sequential simulation-based inference for gravitational wave signals
The current and upcoming generations of gravitational wave experiments represent an exciting step forward in terms of detector sensitivity and performance. For example, key upgrades at the LIGO, Virgo and KAGRA facilities will see the next observing run (O4) probe a spatial volume around four times larger than the previous run (O3), and design implementations for, e.g., the Einstein Telescope, Cosmic Explorer, and LISA experiments are taking shape to explore a wider frequency range and probe cosmic distances. In this context, however, a number of very real data analysis problems face the gravitational wave community. For example, it will be critical to develop tools and strategies to analyze (among other scenarios) signals that arrive coincidentally in detectors, longer signals that are in the presence of nonstationary noise or other shorter transients, as well as noisy, potentially correlated, coherent stochastic backgrounds. With these challenges in mind, we develop peregrine, a new sequential simulation-based inference approach designed to study broad classes of gravitational wave signal. In this work, we describe the method and implementation, before demonstrating its accuracy and robustness through direct comparison with established likelihood-based methods. Specifically, we show that we are able to fully reconstruct the posterior distributions for every parameter of a spinning, precessing compact binary coalescence using one of the most physically detailed and computationally expensive waveform approximants (SEOBNRv4PHM). Crucially, we are able to do this using only 2% of the waveform evaluations that are required in, e.g., nested sampling approaches. Finally, we provide some outlook as to how this level of simulation efficiency and flexibility in the statistical analysis could allow peregrine to tackle these current and future gravitational wave data analysis problems
Multimessenger Universe with Gravitational Waves from Binaries
Future GW detector networks and EM observatories will provide a unique
opportunity to observe the most luminous events in the Universe involving
matter in extreme environs. They will address some of the key questions in
physics and astronomy: formation and evolution of compact binaries, sites of
formation of heavy elements and the physics of jets.Comment: 11 pages, two tables, White Paper submitted to the Astro-2020 (2020
Astronomy and Astrophysics Decadal Survey) by GWIC-3G Science Case Team
(GWIC: Gravitational-Wave International Committee
Gravitational radiation reaction in the equations of motion of compact binaries to 3.5 post-Newtonian order
We compute the radiation reaction force on the orbital motion of compact
binaries to the 3.5 post-Newtonian (3.5PN) approximation, i.e. one PN order
beyond the dominant effect. The method is based on a direct PN iteration of the
near-zone metric and equations of motion of an extended isolated system, using
appropriate ``asymptotically matched'' flat-space-time retarded potentials. The
formalism is subsequently applied to binary systems of point particles, with
the help of the Hadamard self-field regularisation. Our result is the 3.5PN
acceleration term in a general harmonic coordinate frame. Restricting the
expression to the centre-of-mass frame, we find perfect agreement with the
result derived in a class of coordinate systems by Iyer and Will using the
energy and angular momentum balance equations.Comment: 28 pages, references added, to appear in Classical and Quantum
Gravit
A blind hierarchical coherent search for gravitational-wave signals from coalescing compact binaries in a network of interferometric detectors
We describe a hierarchical data analysis pipeline for coherently searching
for gravitational wave (GW) signals from non-spinning compact binary
coalescences (CBCs) in the data of multiple earth-based detectors. It assumes
no prior information on the sky position of the source or the time of
occurrence of its transient signals and, hence, is termed "blind". The pipeline
computes the coherent network search statistic that is optimal in stationary,
Gaussian noise, and allows for the computation of a suite of alternative
statistics and signal-based discriminators that can improve its performance in
real data. Unlike the coincident multi-detector search statistics employed so
far, the coherent statistics are different in the sense that they check for the
consistency of the signal amplitudes and phases in the different detectors with
their different orientations and with the signal arrival times in them. The
first stage of the hierarchical pipeline constructs coincidences of triggers
from the multiple interferometers, by requiring their proximity in time and
component masses. The second stage follows up on these coincident triggers by
computing the coherent statistics. The performance of the hierarchical coherent
pipeline on Gaussian data is shown to be better than the pipeline with just the
first (coincidence) stage.Comment: 12 pages, 3 figures, accepted for publication in Classical and
Quantum Gravit
Parameter estimation of compact binaries using the inspiral and ringdown waveforms
We analyze the problem of parameter estimation for compact binary systems
that could be detected by ground-based gravitational wave detectors.
So far this problem has only been dealt with for the inspiral and the
ringdown phases separately. In this paper, we combine the information from both
signals, and we study the improvement in parameter estimation, at a fixed
signal-to-noise ratio, by including the ringdown signal without making any
assumption on the merger phase. The study is performed for both initial and
advanced LIGO and VIRGO detectors.Comment: matching cqg versio
Supplement: Going the Distance: Mapping Host Galaxies of LIGO and Virgo Sources in Three Dimensions Using Local Cosmography and Targeted Follow-up
This is a supplement to the Letter of Singer et al.
(https://arxiv.org/abs/1603.07333), in which we demonstrated a rapid algorithm
for obtaining joint 3D estimates of sky location and luminosity distance from
observations of binary neutron star mergers with Advanced LIGO and Virgo. We
argued that combining the reconstructed volumes with positions and redshifts of
possible host galaxies can provide large-aperture but small field of view
instruments with a manageable list of targets to search for optical or infrared
emission. In this Supplement, we document the new HEALPix-based file format for
3D localizations of gravitational-wave transients. We include Python sample
code to show the reader how to perform simple manipulations of the 3D sky maps
and extract ranked lists of likely host galaxies. Finally, we include
mathematical details of the rapid volume reconstruction algorithm.Comment: For associated data release, see
http://asd.gsfc.nasa.gov/Leo.Singer/going-the-distanc
- …