86 research outputs found
Self-Organizing Map with False Neighbor Degree between Neurons for Effective Self-Organization
In the real world, it is not always true that the nextdoor house is close to my house, in other words, "neighbors" are not always "true neighbors". In this study, we propose a new Self-Organizing Map (SOM) algorithm, SOM with False Neighbor degree between neurons (called FN-SOM). The behavior of FN-SOM is investigated with learning for various input data. We confirm that FN-SOM can obtain the more effective map reflecting the distribution state of input data than the conventional SOM and Growing Grid
Spatial Signature Estimation with an Uncalibrated Uniform Linear Array
In this paper, the problem of spatial signature estimation using a uniform linear array (ULA) with unknown sensor gain and phase errors is considered. As is well known, the directions-of-arrival (DOAs) can only be determined within an unknown rotational angle in this array model. However, the phase ambiguity has no impact on the identification of the spatial signature. Two auto-calibration methods are presented for spatial signature estimation. In our methods, the rotational DOAs and model error parameters are firstly obtained, and the spatial signature is subsequently calculated. The first method extracts two subarrays from the ULA to construct an estimator, and the elements of the array can be used several times in one subarray. The other fully exploits multiple invariances in the interior of the sensor array, and a multidimensional nonlinear problem is formulated. A Gauss–Newton iterative algorithm is applied for solving it. The first method can provide excellent initial inputs for the second one. The effectiveness of the proposed algorithms is demonstrated by several simulation results
Self-Organizing Map with False Neighbor Degree between Neurons for Effective Self-Organization
In the real world, it is not always true that the nextdoor house is close to my house, in other words, "neighbors" are not always "true neighbors". In this study, we propose a new Self-Organizing Map (SOM) algorithm, SOM with False Neighbor degree between neurons (called FN-SOM). The behavior of FN-SOM is investigated with learning for various input data. We confirm that FN-SOM can obtain the more effective map reflecting the distribution state of input data than the conventional SOM and Growing Grid
SOCIAL NETWORK MODELING BY USING COUPLED OCSILLATORY SYSTEMS
In this study, we investigate the clustering phenomena in a social network of coupled chaotic circuits. We observe the various clustering phenomena in a social network model using coupled chaotic circuits when we change the scaling parameter ofthe coupling strength
Chaos glial network connected to Multi-Layer Perceptron for Solving Two-Spiral Problem
Abstract — Some methods using artificial neural network were proposed for solving to the Two-Spiral Problem (TSP). TSP is a problem which classifies two spirals drawn on the plane, and it is famous as the high nonlinear problem. In this paper, we propose a chaos glial network which connected to Multi-Layer Perceptron (MLP). The chaos glial network is inspired by astrocyte which is glial cell in the brain. By computer simulations for solving TSP, we confirmed that the proposed chaos glial network connected to MLP gains better performance than the conventional MLP. I
Performance of Chaos and Burst Noises Injected to the Hopfield NN for Quadratic Assignment Problems
In this paper, performance of chaos and burst noises injected to the Hopfield Neural Network for quadratic assignment problems is investigated. For the evaluation of the noises, two methods to appreciate finding a lot of nearly optimal solutions are proposed. By computer simulations, it is confirmed that the burst noise generated by the Gilbert model with a laminar part and a burst part achieved the good performance as the intermittency chaos noise near the three-periodic window
Reactive direction control for a mobile robot: A locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated
Locusts possess a bilateral pair of uniquely identifiable visual neurons that respond vigorously to
the image of an approaching object. These neurons are called the lobula giant movement
detectors (LGMDs). The locust LGMDs have been extensively studied and this has lead to the
development of an LGMD model for use as an artificial collision detector in robotic applications.
To date, robots have been equipped with only a single, central artificial LGMD sensor, and this
triggers a non-directional stop or rotation when a potentially colliding object is detected. Clearly,
for a robot to behave autonomously, it must react differently to stimuli approaching from
different directions. In this study, we implement a bilateral pair of LGMD models in Khepera
robots equipped with normal and panoramic cameras. We integrate the responses of these LGMD
models using methodologies inspired by research on escape direction control in cockroaches.
Using ‘randomised winner-take-all’ or ‘steering wheel’ algorithms for LGMD model integration,
the khepera robots could escape an approaching threat in real time and with a similar
distribution of escape directions as real locusts. We also found that by optimising these
algorithms, we could use them to integrate the left and right DCMD responses of real jumping
locusts offline and reproduce the actual escape directions that the locusts took in a particular
trial. Our results significantly advance the development of an artificial collision detection and
evasion system based on the locust LGMD by allowing it reactive control over robot behaviour.
The success of this approach may also indicate some important areas to be pursued in future
biological research
- …