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PAPER

Performance of Chaos and Burst Noises Injected to the Hopfield NN
for Quadratic Assignment Problems

Yoko UWATE†a), Student Member, Yoshifumi NISHIO†b), Tetsushi UETA††c), Members,
Tohru KAWABE†††d), Nonmember, and Tohru IKEGUCHI††††e), Member

SUMMARY In this paper, performance of chaos and burst noises in-
jected to the Hopfield Neural Network for quadratic assignment problems
is investigated. For the evaluation of the noises, two methods to appreciate
finding a lot of nearly optimal solutions are proposed. By computer simu-
lations, it is confirmed that the burst noise generated by the Gilbert model
with a laminar part and a burst part achieved the good performance as the
intermittency chaos noise near the three-periodic window.
key words: chaos, intermittency, burst noise, neural network, combinato-
rial optimization problems, QAP

1. Introduction

Solving combinatorial optimization problem is one of the
important applications of the neural network (abbr. NN). If
we choose connection weights between neurons of the Hop-
field NN appropriately according to given problems, we can
obtain a good solution by the energy minimization principle
[1]. However, the solutions are often trapped into a local
minimum and do not reach the global minimum (namely
optimal solution). In order to avoid this critical problem,
several people proposed the method adding some kinds of
noise for solving traveling salesman problems (abbr. TSP)
with the Hopfield NN. Hayakawa and Sawada pointed out
that intermittency chaos near the three-periodic window of
the logistic map gains the best performance [2]. They con-
cluded that the good result might be obtained by some prop-
erties of the chaos noise; short time correlations of the time-
sequence. Hasegawa et al. investigated solving abilities of
the Hopfield NN with various surrogate noises, and they
concluded that the effects of the chaotic sequence for solv-
ing optimization problems can be replaced by stochastic
noise with the similar autocorrelation [3]. However, their
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researches treated relatively easy problem (TSP) only and
they evaluated the performance of the noises by whether to
find the optimal solution or not. We consider that the perfor-
mance of the noises should be evaluated by finding a lot of
nearly optimal solutions within a certain period, especially
for difficult problems. Hence, we do not consider that the
reason of good performance of chaos noise has been com-
pletely disclosed. Especially, we emphasize that it is impor-
tant to probe into the reason why the intermittency chaos is
better than fully developed chaos.

In this paper, the intermittency chaos noise near the
three-periodic window is modeled by the Gilbert model [4]
with a laminar part and a burst part. Both of intermittency
chaos noise and the burst noise generated by the Gilbert
model are injected to the Hopfield NN for quadratic assign-
ment problems (abbr. QAP) said to be much more difficult
to solve than TSP [5], [6]. We examine frequency distribu-
tion of the obtained solutions to compare the performance of
the noises in detail. Furthermore, we propose two methods
Depth 1 and Depth 2 to appreciate finding a lot of nearly
optimal solutions for the evaluation of the noises. By com-
puter simulations we confirm that the burst noise generated
by the Gilbert model is also effective to solve QAP and we
can say that the irregular switching of the laminar parts and
the burst parts is one reason of the good performance of the
Hopfield NN with chaos noise.

2. Solving QAP with the Hopfield NN

Various methods are proposed for solving QAP which is one
of the NP-hard combinatorial optimization problems. QAP
is expressed as follow: given two matrices, distance ma-
trix C and flow matrix D, and find the permutation p which
corresponds to the minimum value of the objective function
f (p) in Eq. (1).

f (p) =
N∑

i=1

N∑
j=1

Ci jDp(i)p( j), (1)

where Ci j and Di j are the (i, j)-th elements of C and D, re-
spectively, p(i) is the i-th element of the vector p, and N is
the size of the problem. There are many real applications
which are formulated by Eq. (1). One example of QAP is
to find an arrangement of factories to make a cost the min-
imum. The cost is given by the distance between the cities
and the flow of the products between the factories (Fig. 1).
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Other examples are the placement of logical modules in an
IC chip, the distribution of medical services in a large hos-
pital, and so on.

Because the QAP is very difficult, it is almost impossi-
ble to solve the optimum solutions in larger problems. The
largest problem whose optimal solution can be obtained may
be only 36 in recent study [7]. Further, computation time is
very long to obtain the exact optimum solutions. Therefore,
it is usual to develop heuristic methods which search nearly
optimal solutions in reasonable time.

For solving an N-element QAP by the Hopfield NN,
N × N neurons are required and the following energy func-
tion is defined:

E =
N∑

i,m=1

N∑
j,n=1

wim; jnx jn +

N∑
i,m=1

θimxim. (2)

The neurons are coupled each other with the synaptic
connection weight. Suppose that the weight between (i,m)-
th neuron and ( j, n)-th neuron and the threshold of the (i,m)-
th neuron are described by:

wim; jn = −2

{
A(1 − δmn)δi j

+Bδmn(1 − δi j) +
Ci jDmn

q

}

θim = A + B (3)

where A and B are positive constants, q is a normaliza-
tion parameter to correspond given problems, and δi j is the
Kronecker’s delta. The states of N × N neurons are asyn-
chronously updated due to the following difference equa-
tion:

xim(t + 1) = g


N∑

j,n=1

wim; jnx jn(t) − θim + βzim(t)

)
(4)

where g is a sigmoidal function defined as follows:

g(x) =
1

1 + exp
(
− x
ε

) (5)

zim is an additional noise, and β limits the amplitude of the

Fig. 1 An example of QAP.

noise.
Also, we use the method suggested by Sato et al. (1.1

in [8]) to decide firing of neurons.

3. Chaos and Burst Noises

3.1 Chaos Noise

In this subsection, we describe chaos noise injected to the
Hopfield NN. The logistic map is used to generate the chaos
noise:

ẑim(t + 1) = αẑim(t)(1 − ẑim(t)). (6)

Varying the parameter α, Eq. (6) behaves chaotically via
a period-doubling cascade. Further, it is well known that
the map produces intermittent bursts just before periodic-
windows appear. Figure 2 shows an example of the intermit-
tency chaos near the three-periodic window obtained from
Eq. (6) for α = 3.8274. As we can see from the figure, the
chaotic time series could be divided into two phases; laminar
parts of periodic behavior with period three and burst parts
of spread points over the invariant interval. As increasing
α, the ratio of the laminar parts becomes larger and finally
the three-periodic window appears. For the comparison, we
also carry out computer simulations for the case of fully de-
veloped chaos in Fig. 3 which is obtained from Eq. (6) for
α = 4.0000. This noise is much more similar to the random
noise.

When we inject the chaos noises to the Hopfield NN,
we normalize ẑim by Eq. (7).

zim(t) =
ẑim(t) − z̄
σz

(7)

where z̄ is the average of ẑ(t), and σz is the standard devia-
tion of ẑ(t).

3.2 Burst Noise

In this subsection, we model the intermittency chaos by us-
ing the two-state Gilbert model shown in Fig. 4. The Gilbert
model is sometimes used for characterizing error-generating
mechanisms in digital communication channels.

Fig. 2 Intermittency chaos noise near three-periodic window. α=3.8274.
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Fig. 3 Fully developed chaos noise. α=4.0000.

Fig. 4 Two-state Gilbert model.

Fig. 5 Burst noise generated by the Gilbert model with p1 = 0.247 and
p2 = 0.238.

At first, we distinguish the laminar part and the burst
part of the intermittency chaos. Because we treat only the
intermittency chaos near the three-periodic window, we re-
gard three successive sequences starting from a point whose
value is 1.194 or more as one-period of the laminar part.
Other points are regarded as the burst part.

One state S 1 corresponds to the burst part and generates
uniformly distributed noise over the interval {−1.56–1.236},
while the other state S 2 corresponds to the laminar part and
generates three-periodic sequence {1.236, −1.560, −0.320}
imitating the three-periodic window of the logistic map. The
transition probabilities p1 and p2 are calculated by the aver-
age lengths of the laminar parts and the burst parts in the
intermittency chaos in Fig. 2 according to

Average length of the burst parts =
1
p1

(8)

Average length of the laminar parts =
1
p2

(9)

Figure 5 shows an example of the burst noise generated by
the Gilbert model.

4. Simulated Results

In this section, the simulated results of the Hopfield NN for
QAP with the three different noises, namely the intermit-
tency chaos noise, the fully developed chaos noise, and the
burst noise generated by the Gilbert model are shown.

The first target problem is named as “Nug12” chosen
from the site QAPLIB [7]. The number of the elements is
12 and the optimal solution is known as 578. The parameters
of the Hopfield NN are fixed as A = 0.9, B = 0.9, q = 140,
and ε = 0.02 and the amplitude of the injected noise is fixed
as β = 0.6. The iteration number Niteration of the network is
fixed as 10000.

4.1 Solving Ability

Since we know the optimal solution in advance, we define
the Success such that the NN finds the optimal solution at
least once during the defined iteration number Niteration. We
repeat this trial 100 times and count the number of the Suc-
cess for the solving ability S A defined as

S A =
Number of Success
Number of Trials

× 100 [%]. (10)

We also record the minimum cost found during each trial
and use the Average of the minima for the evaluation. The
Error is also defined as

Error =
Average − Optimal Solution

Optimal Solution
× 100 [%]. (11)

The results are summarized in Table 1. The results
show that the intermittency chaos noise and the burst noise
have much better performance than the fully developed
chaos noise. Furthermore, it is interesting to note that the
burst noise generated by the Gilbert model has the similar
Average to the intermittency chaos noise.

4.2 Frequency Distribution

In order to make clear the reason of the good performance
of the intermittency chaos noise and the burst noise, we ex-
amine frequency distribution of the obtained solutions.

At first, we explain how to accept the solutions. The
Hopfield NN with the noises can find various solutions.
However, the state of the Hopfield NN sometimes stays
around one solution or a group of several solutions. We con-
sider that such a behavior is not useful to find the optimal
or nearly optimal solutions. So, we take the only-different-
solutions method. Namely, we take into account only the
solutions whose firing patterns have not found ever in each
trial. In other words, we accept only the first time if the com-
pletely same firing patterns appear more than once in each
trial.

The results of the frequency distribution are shown in
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Table 1 Solving abilities for 12-element QAP.

Intermittency chaos Burst Fully developed chaos

Niteration S A[%] Average Error[%] S A[%] Average Error[%] S A[%] Average Error[%]

1000 1 612.66 5.997 1 615.52 6.491 0 629.46 8.903
2000 1 607.64 5.128 1 607.96 5.183 0 628.08 8.664
3000 3 604.04 4.505 1 604.36 4.561 0 627.98 8.647
4000 3 602.36 4.214 1 602.34 4.211 0 627.98 8.647
5000 5 601.02 3.983 1 601.42 4.052 0 627.98 8.647
6000 7 600.24 3.848 1 600.70 3.927 0 627.98 8.647
7000 7 599.32 3.689 2 599.76 3.765 0 627.98 8.647
8000 7 599.08 3.627 2 599.42 3.706 0 627.98 8.647
9000 7 598.42 3.533 2 598.96 3.626 0 627.98 8.647
10000 7 598.14 3.484 2 598.74 3.588 0 627.98 8.647

Fig. 6 Frequency distribution of solutions with intermittency chaos noise
for Nug12.

Fig. 7 Frequency distribution of solutions with burst noise for Nug12.

Figs. 6, 7 and 8. The frequency means the number of the
accepted solutions with the corresponding costs found dur-
ing 10000 iterations. We can see that a lot of solutions are
found for the cases of the intermittency chaos noise and the
burst noise. On the other hand, only a very small number of
the solutions are found for the fully developed chaos. (Note
that the scale of the vertical axis of Fig. 8 is 1/10 of those of
Figs. 6 and 7.) Although the result in Table 1 would reflect
the difference of the numbers of the obtained solutions, we
can see that the methods using only the best solution in each
trial are not sufficient to evaluate the performances of the
noises.

Fig. 8 Frequency distribution of solutions with fully developed chaos
noise for Nug12.

4.3 Depth

Until now, we have evaluated the performance of the Hop-
field NN with noises by using only the best solution found
in each trial; time to find the optimal solution, frequency
of finding the optimal solution during a given time, average
of the minimum cost in each trial, and so on. However, as
shown in the previous subsection, such methods are not suf-
ficient to reflect the number of the obtained solutions. Fur-
ther, when the network can not find the optimal solution, the
methods using only the optimal solution do not give a cor-
rect evaluation of the network. Namely, for very difficult
problems, we consider that it is more important to find a lot
of nearly optimal solutions than to happen to find the opti-
mal solution. Therefore, we propose two evaluation meth-
ods to appreciate finding a lot of nearly optimal solutions.

4.3.1 Depth 1

The first evaluation method Depth 1 is defined as

Depth 1 =
n∑

k=0

{ f (pk) − D∞}2 (12)

where D∞ is a constant which is large enough to include
the costs of all solutions, n is the number of the accepted
solutions and the cost f (pk) is calculated by Eq. (1) using the
permutation pk corresponding to the k-th accepted solution.
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Table 2 Depth 1 for Nug12.

Depth 1

D∞
Intermittency

Burst
Fully developed

chaos chaos
1000 1.07e+08 0.80e+08 7.36e+06

Table 3 Depth 2 for Nug12.

Depth 2

Dth
Intermittency

Burst
Fully developed

chaos chaos
858.8 2.58e+07 1.99e+07 1.87e+06
812.0 1.21e+07 0.95e+07 9.11e+05
765.2 3.38e+06 2.92e+06 2.97e+05

The calculated result of Depth 1 is shown in Table 2.
The performances of the intermittency chaos noise and the
burst noise generated by the Gilbert model are much higher
than the fully developed chaos noise. We consider that this
result is more appropriate than the evaluation using only
the optimal solution to indicate the fact that the fully devel-
oped chaos noise is behind the others. Further, we can see
that there is still some difference between the intermittency
chaos noise and the burst noise.

4.3.2 Depth 2

The second evaluation method Depth 2 is defined as

Depth 2 =
n∑

k∈kg
{ f (pk) − Dth}2

−
n∑

k�kg

{ f (pk) − Dth}2

where kg = {k | f (pk) ≤ Dth}. (13)

This evaluation has an advantage such that we can set the
threshold Dth according to the requirement. We consider
that finding a lot of bad solutions makes the performance
of the network worse. However, the value of Depth 1 in-
creases even if the obtained solution is very bad. Hence, in
this evaluation, we not only set up a threshold but give a
penalty according to the cost. Namely, if the network finds
a solution with the cost more than a given threshold value,
the value of Depth 2 is reduced.

The calculated result of Depth 2 is shown in Table 3.
The tendency of the result is similar to that of Depth 1.

4.4 30-Element Problem

We carried out computer simulation for a larger problem
with 30 elements named “Nug30.” The global minimum
of this target problem is known as 6124. The parameters of
the Hopfield NN are fixed as A = 0.9, B = 0.9, q = 640,
and ε = 0.02 and the amplitude of the injected noise is fixed
as β = 0.6. The iteration number Niteration is also fixed as
10000.

The results of the frequency distribution are shown in

Fig. 9 Frequency distribution of solutions with intermittency chaos noise
for Nug30.

Fig. 10 Frequency distribution of solutions with burst noise for Nug30.

Fig. 11 Frequency distribution of solutions with fully developed chaos
noise for Nug30.

Table 4 Depth 1 for Nug30.

Depth 1

D∞
Intermittency

Burst
Fully developed

chaos chaos
10000 3.89e+10 2.48e+10 1.96e+09

Figs. 9, 10 and 11. Further, the calculated results of Depth 1
and Depth 2 are shown in Tables 4 and 5, respectively.

From these results, we can say that the intermittency
chaos noise and the burst noise generated by the Gilbert
model has much better performance than the fully developed
chaos noise and that there is still some difference between
the intermittency chaos noise and the burst noise.
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Table 5 Depth 2 for Nug30.

Depth 2

Dth
Intermittency

Burst
Fully developed

chaos chaos
8536 6.04e+09 4.32e+09 3.23e+08
8134 2.14e+09 1.71e+09 1.21e+08
7732 2.78e+08 3.47e+08 1.99e+07

Fig. 12 Regular burst noise.

Fig. 13 Frequency distribution of solutions with regular burst noise for
Nug30.

4.5 Regular Burst Noise

At last, in order to support our conjecture on the good per-
formance of the intermittency chaos, we consider a regular
burst noise whose laminar parts and burst parts have fixed
lengths and appear alternately. The length of the laminar
parts and the burst parts are fixed as 4-period. Figure 12
shows an example of the regular burst noise and Fig. 13
shows the frequency distribution of solutions when the noise
is applied to the network under the same conditions as 4.4.

As we can see from the frequency distribution, the reg-
ular switching of the laminar parts and the burst parts makes
the performance worse remarkably. (The difference between
Figs. 10 and 13 might looks similar to the difference be-
tween Figs. 9 and 10. However, the difference of the time
series used for Figs. 10 and 13 is only the regularity of the
switchings and it is considered to be much smaller than that
of the time series used for Figs. 9 and 10.) Hence, we can
conclude that not only the existence of the laminar parts and

the burst parts but also their irregular switching is an impor-
tant factor of the intermittency chaos.

5. Conclusions

In this paper, we have investigated the performance of the
chaos and the burst noises injected to the Hopfield NN for
QAP. For the correct evaluation of the noises, we proposed
two methods to appreciate finding a lot of nearly optimal
solutions. We confirmed by the computer simulations that
the burst noise generated by the Gilbert model with a lami-
nar part and a burst part achieved the good performance as
the intermittency chaos noise near the three-periodic win-
dow. The result suggests that the irregular switching of the
laminar parts and the burst parts is one reason of the good
performance of the Hopfield NN with chaos noise. We also
found that there is still some difference between the inter-
mittency chaos noise and the burst noise. Investigating the
reason of the difference in detail is our important future re-
search.
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