85 research outputs found

    Deformable plate tectonic models of the southern North Atlantic

    Get PDF
    Significant, poly-phase deformation occurred prior to, simultaneous with, and after the opening of the North Atlantic Ocean. Understanding this deformation history is essential for understanding the regional development and the mechanisms controlling rifting and subsequent failure or breakup. Here, we primarily use published constraints to construct deformable plate tectonic models for the southern North Atlantic from 200 Ma to present using GPlates. The aim of this work is to test both the capability of the GPlates deformable modelling approach and the reliability of published plate reconstructions. Overall, modelled crustal thickness values at 0 Ma produced from the deformable models show general, regional-scale, similarities with values derived from the inversion of gravity data for crustal thickness. However, the deformable models typically underestimate thinning in marginal basins and overestimate crustal thickness in continental fragments compared to values from gravity inversion. This is possibly due to: 1) thinning occurring earlier than the 200 Ma start time modelled, 2) variations in the original crustal thickness, 3) depth-dependent stretching, 4) rigid blocks undergoing some degree of thinning, and 5) variations in the mesh density of the models. The results demonstrate that inclusion of micro-continental fragments, and locally defined limits of continental crust, generally produce results more akin to observations. One exception is the Grand Banks where global GPlates models produce more realistic deformation, likely due to the inclusion of the exhumed domains continent-ward of the transition zone boundary. Results also indicate that Flemish Cap rotation is required to provide a reasonable fit between North America and Iberia, with the palaeo-position of the Flemish Cap likely to be the proto-Orphan sub-basins. Moreover, the East and West Orphan sub-basins formed separately due to the respective rotations of the Flemish Cap and the Orphan Knoll, which was likely associated with other continental fragments that subsequently contributed to the thicker crust forming the boundary between the East and West Orphan basins. The results also suggest a link between tectonic and magmatic processes. For example, the inclusion of an Orphan Knoll micro-continental block results in greater extension (higher beta factors) in the northern West Orphan Basin near the termination of the Charlie-Gibbs Fracture Zone, and the site of the Charlie-Gibbs Volcanic Province (CGVP). Thus, we infer that the CGVP was likely influenced by plate tectonic processes through the concentration of strain resulting from interaction in proximity to the transform system. Finally, marginal basins that were considered to be conjugate and thus related, may only appear conjugate through later rotation of micro-continental blocks, and thus their genesis is not directly related

    Realization of a superconducting atom chip

    Full text link
    We have trapped rubidium atoms in the magnetic field produced by a superconducting atom chip operated at liquid Helium temperatures. Up to 8.2⋅1058.2\cdot 10^5 atoms are held in a Ioffe-Pritchard trap at a distance of 440 ÎŒ\mum from the chip surface, with a temperature of 40 ÎŒ\muK. The trap lifetime reaches 115 s at low atomic densities. These results open the way to the exploration of atom--surface interactions and coherent atomic transport in a superconducting environment, whose properties are radically different from normal metals at room temperature.Comment: Submitted to Phys. Rev. Let

    Macroscopic Entanglement of a Bose Einstein Condensate on a Superconducting Atom Chip

    Full text link
    We propose and analyse a practically implementable scheme to generate macroscopic entanglement of a Bose-Einstein condensate in a micro-magnetic trap magnetically coupled to a superconducting loop. We treat the superconducting loop in a quantum superposition of two different flux states coupled with the magnetic trap to generate macroscopic entanglement. Our scheme also provides a platform to realise interferometry of entangled atoms through the Bose-Einstein condensate and to explore physics at the quantum-classical interface.Comment: 4 Pages, Two figure

    The thermal imprint of continental breakup during the formation of the South China Sea

    Get PDF
    This research used data provided by the International Ocean Discovery Program (IODP).We thanks the participants to IODP Expedition 367-368 as well as the captains and crew of the Joides Resolution. Seismic sections originate from the IODP Expedition 367/368/368X proceeding volume. Platte River Associates, Inc is thanked for providing an academic licence of BasinMod 2D. We acknowledge IODP France and ECORD for the support. Funding for this research was provided by Total SA R&D (J.N. Ferry). SAB gratefully acknowledges NERC award NE/R002576/1; Measuring Rates of Weathered Petroleum Accumulation, South China Sea.Peer reviewedPublisher PD

    Bose-Einstein condensation on a superconducting atom chip

    Full text link
    We have produced a Bose-Einstein condensate (BEC) on an atom chip using only superconducting wires in a cryogenic environment. We observe the onset of condensation for 10^4 atoms at a temperature of 100 nK. This result opens the way for studies of atom losses and decoherence in a BEC interacting with a superconducting surface. Studies of dipole-blockade with long-lived Rydberg atoms in a small and dense atomic sample are underway.Comment: 4 pages, 4 figures. Accepted for publication in Europhysics Letter

    Inductively guided circuits for ultracold dressed atoms

    Get PDF
    Recent progress in optics, atomic physics and material science has paved the way to study quantum effects in ultracold atomic alkali gases confined to non-trivial geometries. Multiply connected traps for cold atoms can be prepared by combining inhomogeneous distributions of DC and radio-frequency electromagnetic fields with optical fields that require complex systems for frequency control and stabilization. Here we propose a flexible and robust scheme that creates closed quasi-one-dimensional guides for ultracold atoms through the ‘dressing’ of hyperfine sublevels of the atomic ground state, where the dressing field is spatially modulated by inductive effects over a micro-engineered conducting loop. Remarkably, for commonly used atomic species (for example, 7Li and 87Rb), the guide operation relies entirely on controlling static and low-frequency fields in the regimes of radio-frequency and microwave frequencies. This novel trapping scheme can be implemented with current technology for micro-fabrication and electronic control

    Trapped electron coupled to superconducting devices

    Full text link
    We propose to couple a trapped single electron to superconducting structures located at a variable distance from the electron. The electron is captured in a cryogenic Penning trap using electric fields and a static magnetic field in the Tesla range. Measurements on the electron will allow investigating the properties of the superconductor such as vortex structure, damping and decoherence. We propose to couple a superconducting microwave resonator to the electron in order to realize a circuit QED-like experiment, as well as to couple superconducting Josephson junctions or superconducting quantum interferometers (SQUIDs) to the electron. The electron may also be coupled to a vortex which is situated in a double well potential, realized by nearby pinning centers in the superconductor, acting as a quantum mechanical two level system that can be controlled by a transport current tilting the double well potential. When the vortex is trapped in the interferometer arms of a SQUID, this would allow its detection both by the SQUID and by the electron.Comment: 13 pages, 5 figure
    • 

    corecore