9 research outputs found

    Pathway sensor-based functional genomics screening identifies modulators of neuronal activity

    Get PDF
    Neuronal signal transduction shapes brain function and malfunction may cause mental disorders. Despite the existence of functional genomics screens for proliferation and toxicity, neuronal signalling has been difficult to address so far. To overcome this limitation, we developed a pooled screening assay which combines barcoded activity reporters with pooled genetic perturbation in a dual-expression adeno-associated virus (AAV) library. With this approach, termed pathScreener, we comprehensively dissect signalling pathways in postmitotic neurons. This overcomes several limitations of lentiviral-based screens. By applying first a barcoded and multiplexed reporter assay, termed cisProfiler, we identified the synaptic-activity responsive element (SARE) as top performance sensor of neuronal activity. Next, we targeted more than 4,400 genes and screened for modulatory effects on SARE activity in primary cortical neurons. We identified with high replicability many known genes involved in glutamatergic synapse-to-nucleus signalling of which a subset was validated in orthogonal assays. Several others have not yet been associated with the regulation of neuronal activity such as the hedgehog signalling members Ptch2 and Ift57. This assay thus enhances the toolbox for analysing regulatory processes during neuronal signalling and may help identifying novel targets for brain disorders

    Interferon-gamma ameliorates experimental autoimmune encephalomyelitis by inducing homeostatic adaptation of microglia

    Get PDF
    Compelling evidence has shown that interferon (IFN)-γ has dual effects in multiple sclerosis and in its animal model of experimental autoimmune encephalomyelitis (EAE), with results supporting both a pathogenic and beneficial function. However, the mechanisms whereby IFN-γ may promote neuroprotection in EAE and its effects on central nervous system (CNS)-resident cells have remained an enigma for more than 30 years. In this study, the impact of IFN-γ at the peak of EAE, its effects on CNS infiltrating myeloid cells (MC) and microglia (MG), and the underlying cellular and molecular mechanisms were investigated. IFN-γ administration resulted in disease amelioration and attenuation of neuroinflammation associated with significantly lower frequencies of CNS CD11b+ myeloid cells and less infiltration of inflammatory cells and demyelination. A significant reduction in activated MG and enhanced resting MG was determined by flow cytometry and immunohistrochemistry. Primary MC/MG cultures obtained from the spinal cord of IFN-γ-treated EAE mice that were ex vivo re-stimulated with a low dose (1 ng/ml) of IFN-γ and neuroantigen, promoted a significantly higher induction of CD4+ regulatory T (Treg) cells associated with increased transforming growth factor (TGF)-β secretion. Additionally, IFN-γ-treated primary MC/MG cultures produced significantly lower nitrite in response to LPS challenge than control MC/MG. IFN-γ-treated EAE mice had a significantly higher frequency of CX3CR1high MC/MG and expressed lower levels of program death ligand 1 (PD-L1) than PBS-treated mice. Most CX3CR1highPD-L1lowCD11b+Ly6G- cells expressed MG markers (Tmem119, Sall2, and P2ry12), indicating that they represented an enriched MG subset (CX3CR1highPD-L1low MG). Amelioration of clinical symptoms and induction of CX3CR1highPD-L1low MG by IFN-γ were dependent on STAT-1. RNA-seq analyses revealed that in vivo treatment with IFN-γ promoted the induction of homeostatic CX3CR1highPD-L1low MG, upregulating the expression of genes associated with tolerogenic and anti-inflammatory roles and down-regulating pro-inflammatory genes. These analyses highlight the master role that IFN-γ plays in regulating microglial activity and provide new insights into the cellular and molecular mechanisms involved in the therapeutic activity of IFN-γ in EAE

    Identification of cell type-specific marker genes and pathways in the mouse brain

    No full text
    Gene expression profiling techniques such as RNA sequencing has greatly contributed to our understanding of physiological and disease processes in the brain. When applied to cellular complex brain tissue samples, these techniques do not account for cell type specific expression changes and the underlying biological pathways of cell types. Aberrations in cell type gene expression patterns have been documented in brain diseases· such as depression, schizophrenia, Alzheimer's among others. Therefore, gene expression at cell type resolution might be critical to understand disease processes and biological pathways. In the recent years, several cell isolation techniques such as such as laser capture micro-dissection and fluorescence-activated cell sorting have been coupled with microarrays for this purpose. However, these methods are technically highly challenging, time-and resource consuming and may be limited because of potential isolation artefacts, mRNA length and abundance biases. For these combined technical issues, gene expression profiling with tissue samples is still the most widely applied approach in brain. In this study, we aim at establishing a transcriptome database for gene expression profiles and identify marker genes that are devoid of these biases, from mouse derived in vitro oligodendrocytes, microglia, astrocytes and neurons. To this end, a modified deep sequencing method that enriches for 3' mRNA reads was used for expression profiling. This study identified numerous cell type-specific gene markers that can potentially be used to characterize cell types and even estimate the proportion of cell types in tissue samples. Additionally, a novel strategy based on RNA abundance to compare the pathway enrichment between the cell types was developed and pathways that are particularly enriched in individual cell types were identified. Thus, this transcriptome database of digital RNA sequencing data generated for the major cell types of the brain can be used as reference information for cell type specific gene expression profiles to overcome some limitations of expression studies from brain tissues

    Age-related myelin degradation burdens the clearance function of microglia during aging

    No full text
    Myelin is synthesized as a multilamellar membrane, but the mechanisms of membrane turnover are unknown. We found that myelin pieces were gradually released from aging myelin sheaths and were subsequently cleared by microglia. Myelin fragmentation increased with age and led to the formation of insoluble, lipofuscin-like lysosomal inclusions in microglia. Thus, age-related myelin fragmentation is substantial, leading to lysosomal storage and contributing to microglial senescence and immune dysfunction in aging
    corecore