3 research outputs found

    Spider conservation in Europe : a review

    Get PDF
    Despite their ecological importance and diversity, spiders (Arachnida: Araneae) are underrepresented in conservation policies in comparison to other groups. We review all extant conservation tools focusing on spiders in Europe, highlighting general patterns, limitations, gaps, and future directions. We assembled a comprehensive online database reporting all available information concerning the legal protection and conservation status of 4,154 spider species. Existing international legislation has limited coverage, with only one species listed in the Bern Convention and EU Habitats Directive. At the national and subnational levels, 178 species are formally mentioned in the legislation of 19 European countries. Moreover, the International Union for Conservation of Nature (IUCN) includes assessments for 301 species worldwide, 164 of these threatened and eight native to Europe. In addition, spiders are mentioned in Regional Red Lists and Red Books in 28 out of 42 European countries considered in this review. Northern and Central European countries have the highest percentage of species assessed at the regional level in Red Lists and Red Books. The Mediterranean basin has the highest spider diversities in Europe but conservation efforts are lacking, both in terms of assessments and national or subnational legislation. Among European species, Dolomedes plantarius, Argyroneta aquatica and Eresus kollari are the most frequently mentioned in European conservation measures, possibly due to their ecological traits and their strict association with declining habitats. Considering the current threats to spiders in Europe, the protection of large areas of suitable habitat should be considered as the most effective approach to spider conservation.Peer reviewe

    Potential of the Red Alga Dixoniella grisea for the Production of Additives for Lubricants

    No full text
    There is an increasing interest in algae-based raw materials for medical, cosmetic or nutraceutical applications. Additionally, the high diversity of physicochemical properties of the different algal metabolites proposes these substances from microalgae as possible additives in the chemical industry. Among the wide range of natural products from red microalgae, research has mainly focused on extracellular polymers for additive use, while this study also considers the cellular components. The aim of the present study is to analytically characterize the extra- and intracellular molecular composition from the red microalga Dixoniella grisea and to evaluate its potential for being used in the tribological industry. D. grisea samples, fractionated into extracellular polymers (EPS), cells and medium, were examined for their molecular composition. This alga produces a highly viscous polymer, mainly composed of polysaccharides and proteins, being secreted into the culture medium. The EPS and biomass significantly differed in their molecular composition, indicating that they might be used for different bio-additive products. We also show that polysaccharides and proteins were the major chemical compounds in EPS, whereas the content of lipids depended on the separation protocol and the resulting product. Still, they did not represent a major group and were thus classified as a potential valuable side-product. Lyophilized algal fractions obtained from D. grisea were found to be not toxic when EPS were not included. Upon implementation of EPS as a commercial product, further assessment on the environmental toxicity to enchytraeids and other soil organisms is required. Our results provide a possible direction for developing a process to gain an environmentally friendly bio-additive for application in the tribological industry based on a biorefinery approach
    corecore