167 research outputs found

    T-dualization of type II superstring theory in double space

    Get PDF
    In this article we offer the new interpretation of T-dualization procedure of type II superstring theory in double space framework. We use the ghost free action of type II superstring in pure spinor formulation in approximation of constant background fields up to the quadratic terms. T-dualization along any subset of the initial coordinates, xax^a, is equivalent to the permutation of this subset with subset of the corresponding T-dual coordinates, yay_a, in double space coordinate ZM=(xĪ¼,yĪ¼)Z^M=(x^\mu,y_\mu). Demanding that the T-dual transformation law after exchange xaā†”yax^a\leftrightarrow y_a has the same form as initial one, we obtain the T-dual NS-NS and NS-R background fields. The T-dual R-R field strength is determined up to one arbitrary constant under some assumptions. The compatibility between supersymmetry and T-duality produces change of bar spinors and R-R field strength. If we dualize odd number of dimensions xax^a, such change flips type IIA/B to type II B/A. If we T-dualize time-like direction, one imaginary unit ii maps type II superstring theories to type IIā‹†II^\star ones.Comment: Fermionic correction for bar variables and fields is clarified. Section 2 is substantially improved; Additional explanations added in the Introductio

    T-duality diagram for a weakly curved background

    Get PDF
    In one of our previous papers we generalized the Buscher T-dualization procedure. Here we will investigate the application of this procedure to the theory of a bosonic string moving in the weakly curved background. We obtain the complete T-dualization diagram, connecting the theories which are the result of the T-dualizations over all possible choices of the coordinates. We distinguish three forms of the T-dual theories: the initial theory, the theory obtained T-dualizing some of the coordinates of the initial theory and the theory obtained T-dualizing all of the initial coordinates. While the initial theory is geometric, all the other theories are non geometric and additionally nonlocal. We find the T-dual coordinate transformation laws connecting these theories and show that the set of all T-dualizations forms an Abelian group

    Noncommutativity and nonassociativity of closed bosonic string on T-dual toroidal backgrounds

    Full text link
    In this article we consider closed bosonic string in the presence of constant metric and Kalb-Ramond field with one non-zero component, Bxy=HzB_{xy}=Hz, where field strength HH is infinitesimal. Using Buscher T-duality procedure we dualize along xx and yy directions and using generalized T-duality procedure along zz direction imposing trivial winding conditions. After first two T-dualizations we obtain QQ flux theory which is just locally well defined, while after all three T-dualizations we obtain nonlocal RR flux theory. Origin of non-locality is variable Ī”V\Delta V defined as line integral, which appears as an argument of the background fields. Rewriting T-dual transformation laws in the canonical form and using standard Poisson algebra, we obtained that QQ flux theory is commutative one and the RR flux theory is noncommutative and nonassociative one. Consequently, there is a correlation between non-locality and closed string noncommutativity and nonassociativity

    FIFTY YEARS OF MICROPROCESSOR EVOLUTION: FROM SINGLE CPU TO MULTICORE AND MANYCORE SYSTEMS

    Get PDF
    Nowadays microprocessors are among the most complex electronic systems that man has ever designed. One small silicon chip can contain the complete processor, large memory and logic needed to connect it to the input-output devices. The performance of today's processors implemented on a single chip surpasses the performance of a room-sized supercomputer from just 50 years ago, which cost over $ 10 million [1]. Even the embedded processors found in everyday devices such as mobile phones are far more powerful than computer developers once imagined. The main components of a modern microprocessor are a number of general-purpose cores, a graphics processing unit, a shared cache, memory and input-output interface and a network on a chip to interconnect all these components [2]. The speed of the microprocessor is determined by its clock frequency and cannot exceed a certain limit. Namely, as the frequency increases, the power dissipation increases too, and consequently the amount of heating becomes critical. So, silicon manufacturers decided to design new processor architecture, called multicore processors [3]. With aim to increase performance and efficiency these multiple cores execute multiple instructions simultaneously. In this way, the amount of parallel computing or parallelism is increased [4]. In spite of mentioned advantages, numerous challenges must be addressed carefully when more cores and parallelism are used.This paper presents a review of microprocessor microarchitectures, discussing their generations over the past 50 years. Then, it describes the currently used implementations of the microarchitecture of modern microprocessors, pointing out the specifics of parallel computing in heterogeneous microprocessor systems. To use efficiently the possibility of multi-core technology, software applications must be multithreaded. The program execution must be distributed among the multi-core processors so they can operate simultaneously. To use multi-threading, it is imperative for programmer to understand the basic principles of parallel computing and parallel hardware. Finally, the paper provides details how to implement hardware parallelism in multicore systems

    MORFOLOŠKA VARIJABILNOST LISTOVA CRNE TOPOLE (Populus nigra L.) NA PODRUČJU VOJVODINE, SRBIJA

    Get PDF
    Morphological study of intra and interpopulation variability of black poplar leaves was carried on four natural populations located in the basin of the major rivers at the area of Vojvodina, Serbia. Research was conducted on the basis of nine leaf morphometric parameters, with descriptive and multivariate statistical analysis. Results show that within and between studied populations exists considerable variability, with the variability much more pronounced within than between populations. Given that the environmental conditions of investigated locations are uniform, it is assumed that the variability is consequences of the specific gene pool of these populations.Crna topola (Populus nigra L.) predstavlja jednu od bitnih pionirskih drvenastih vrsta (PospiÅ”kova et al. 2004) koja je prilagođena specifičnim uvijetima poplavnog područja. Budući da unatrag nekoliko desetljeća čovek intenzivno kontroliÅ”e plavna područja, utvrđeno je da prirodna staniÅ”ta autohtonih ritskih vrsta polako nestaju. UzevÅ”i u obzir nestanak ovih ekosustava, prekomjernu eksploataciju autohtonih topola, introdukciju superiornih hibrida topola i mogućnost introgresija gena kultiviranih topola, crna topola se smatra ugroženom vrstom. Kako bi se mogle primijeniti odgovarajuće metode konzervacije, potrebno je utvrditi postojanje varijabilnosti unutar preostalih prirodnih populacija (Flush et al. 2002). Varijabilnost postojećih prirodnih populacija crne topole na području Vojvodine je u ovom istraživanju ispitana pomoću niza morfoloÅ”kih svojstava lista.Istraživanja unutarpopulacijske i međupopulacijske morfoloÅ”ke varijabilnosti listova crne topole (Populus nigra L.) rađeno je na razini četiri prirodne populacije koje se nalaze u dolinama najvećih rijeka Vojvodine (Dunav, Tisa, Sava ā€“ Slika 1). Skupljanje uzoraka obavljeno je metodom slučajnog odabira u tijeku vegetacijskog perioda kada su listovi potpuno razvijeni. Prikupljeni su listovi srednjeg djela grančice dugorasta koje Tucović (1965) ističe kao najvažnije za karakteriziranje pojedinih sistematskih kategorija. Na herbariziranom materijalu analizirano je devet morfometrijskih svojstava (slika 2).Standardna deskriptivna statistika (prosječna vrijednost, min/max vrijednost, raspon varijacije, standardna devijacija, relativna standardna devijacija), analiza varijance (one way ANOVA), post hoc Tukey HSD test i klaster analiza (metoda najbližeg susjeda, Euklidska udaljenost) su provedeni kako bi se utvrdile razlike na unutarpopulacijskom i međupopulacijskoj razini.Rezultati analize varijance (tabela 2.) ukazuju na postojanje statistički značajnih razlika između individua u okviru populacija za sva ispitivana morfometrijska svojstva (p<0,000). Dok su rezultati analize varijance provedeni radi utvrđivanja značajnosti razlika između populacija pokazali da za svojstva b, d, f, h i i postoji statistički značajna razlika između populacija. Tukey testom i klaster analizom utvrđeno je da se populacija A najviÅ”e ističe, potom slijedi populacija C, dok su populacije B i D najsličnije. Rezultati analiza pokazuju izraženu varijabilnost kada su u pitanju parametri c, e, f i d za koje se smatra da su pod izrazitom genetskom kontrolom, dok parametri b, a i g koji se odlikuju velikom plastičnoŔću pokazuju manju varijabilnost, Å”to ukazuje na slične staniÅ”ne uvjete istraživanih populacija.Dobijene statističke analize ukazale su da na unutarpopulacijskoj i međupopulacijskoj razini postoji značajna varijabilnost, pri čemu je varijabilnost unutar populacija dosta izraženija od varijabilnosti između populacija. Imajući u vidu da su staniÅ”ni uvijeti istraživanih populacija ujednačeni i na osnovi utvrđenih statističkih značajnosti može se zaključiti da su njihove razlike zanemarive, možemo zaključiti da je unutarpopulacijska različitost uzrokovana izrazitom heterogenoŔću analiziranih genotipova ovih populacija

    The Use of Learning Log in Online Education

    Get PDF

    Prikaz knjige Dr Fred Newman i dr Phyllis Goldberg: Vodič za stalni lični rast i razvoj ā€“ Letā€™s Develop!

    Get PDF
    UDK 159.947.3(049.32); 615.862(049.32

    Prikaz knjige Bojana Å korc: Kreativnost u interakciji ā€“ Psihologija stvaralaÅ”tva

    Get PDF
    UDK 159.928(049.32
    • ā€¦
    corecore