4,443 research outputs found

    The role of the GI radiographer: A UK perspective

    Get PDF
    Context: Since the 1990s radiographers in the United Kingdom have expanded their role in gastrointestinal (GI) radiology, first by performing double-contrast barium enema (DCBE) examinations independently and later by interpreting and reporting the results of these exams. Objective: This article will trace the evolution of GI radiographers in the United Kingdom, evaluate their success and explore how the U.K. experience could apply to American radiologist assistants. Methods: The authors surveyed the professional literature to determine the historical context in which GI radiographers emerged and assess how their performance on DCBE exams compares with radiologists’ performance. Results: DCBE exams performed by GI radiographers have been shown to be efficient, cost effective and safe. In addition, GI radiographers have helped reduce waiting and turnaround times for DCBE exams. Summary: The success of GI radiographers in the United Kingdom offers assurance that radiologist assistants can benefit American patients, radiologists and radiologic technologists

    Universal Dynamics of Independent Critical Relaxation Modes

    Get PDF
    Scaling behavior is studied of several dominant eigenvalues of spectra of Markov matrices and the associated correlation times governing critical slowing down in models in the universality class of the two-dimensional Ising model. A scheme is developed to optimize variational approximants of progressively rapid, independent relaxation modes. These approximants are used to reduce the variance of results obtained by means of an adaptation of a quantum Monte Carlo method to compute eigenvalues subject to errors predominantly of statistical nature. The resulting spectra and correlation times are found to be universal up to a single, non-universal time scale for each model

    Monte Carlo computation of correlation times of independent relaxation modes at criticality

    Get PDF
    We investigate aspects of universality of Glauber critical dynamics in two dimensions. We compute the critical exponent zz and numerically corroborate its universality for three different models in the static Ising universality class and for five independent relaxation modes. We also present evidence for universality of amplitude ratios, which shows that, as far as dynamic behavior is concerned, each model in a given universality class is characterized by a single non-universal metric factor which determines the overall time scale. This paper also discusses in detail the variational and projection methods that are used to compute relaxation times with high accuracy

    Monte Carlo Optimization of Trial Wave Functions in Quantum Mechanics and Statistical Mechanics

    Full text link
    This review covers applications of quantum Monte Carlo methods to quantum mechanical problems in the study of electronic and atomic structure, as well as applications to statistical mechanical problems both of static and dynamic nature. The common thread in all these applications is optimization of many-parameter trial states, which is done by minimization of the variance of the local or, more generally for arbitrary eigenvalue problems, minimization of the variance of the configurational eigenvalue.Comment: 27 pages to appear in " Recent Advances in Quantum Monte Carlo Methods" edited by W.A. Leste

    Surface and bulk transitions in three-dimensional O(n) models

    Get PDF
    Using Monte Carlo methods and finite-size scaling, we investigate surface criticality in the O(n)(n) models on the simple-cubic lattice with n=1n=1, 2, and 3, i.e. the Ising, XY, and Heisenberg models. For the critical couplings we find Kc(n=2)=0.4541655(10)K_{\rm c}(n=2)=0.454 1655 (10) and Kc(n=3)=0.693002(2)K_{\rm c}(n=3)= 0.693 002 (2). We simulate the three models with open surfaces and determine the surface magnetic exponents at the ordinary transition to be yh1(o)=0.7374(15)y_{h1}^{\rm (o)}=0.7374 (15), 0.781(2)0.781 (2), and 0.813(2)0.813 (2) for n=1n=1, 2, and 3, respectively. Then we vary the surface coupling K1K_1 and locate the so-called special transition at κc(n=1)=0.50214(8)\kappa_{\rm c} (n=1)=0.50214 (8) and κc(n=2)=0.6222(3)\kappa_{\rm c} (n=2)=0.6222 (3), where κ=K1/K1\kappa=K_1/K-1. The corresponding surface thermal and magnetic exponents are yt1(s)=0.715(1)y_{t1}^{\rm (s)} =0.715 (1) and yh1(s)=1.636(1)y_{h1}^{\rm (s)} =1.636 (1) for the Ising model, and yt1(s)=0.608(4)y_{t1}^{\rm (s)} =0.608 (4) andyh1(s)=1.675(1)y_{h1}^{\rm (s)} =1.675 (1) for the XY model. Finite-size corrections with an exponent close to -1/2 occur for both models. Also for the Heisenberg model we find substantial evidence for the existence of a special surface transition.Comment: TeX paper and 10 eps figure

    Scaling in the vicinity of the four-state Potts fixed point

    Get PDF
    We study a self-dual generalization of the Baxter-Wu model, employing results obtained by transfer matrix calculations of the magnetic scaling dimension and the free energy. While the pure critical Baxter-Wu model displays the critical behavior of the four-state Potts fixed point in two dimensions, in the sense that logarithmic corrections are absent, the introduction of different couplings in the up- and down triangles moves the model away from this fixed point, so that logarithmic corrections appear. Real couplings move the model into the first-order range, away from the behavior displayed by the nearest-neighbor, four-state Potts model. We also use complex couplings, which bring the model in the opposite direction characterized by the same type of logarithmic corrections as present in the four-state Potts model. Our finite-size analysis confirms in detail the existing renormalization theory describing the immediate vicinity of the four-state Potts fixed point.Comment: 19 pages, 7 figure

    Transfer-Matrix Monte Carlo Estimates of Critical Points in the Simple Cubic Ising, Planar and Heisenberg Models

    Full text link
    The principle and the efficiency of the Monte Carlo transfer-matrix algorithm are discussed. Enhancements of this algorithm are illustrated by applications to several phase transitions in lattice spin models. We demonstrate how the statistical noise can be reduced considerably by a similarity transformation of the transfer matrix using a variational estimate of its leading eigenvector, in analogy with a common practice in various quantum Monte Carlo techniques. Here we take the two-dimensional coupled XYXY-Ising model as an example. Furthermore, we calculate interface free energies of finite three-dimensional O(nn) models, for the three cases n=1n=1, 2 and 3. Application of finite-size scaling to the numerical results yields estimates of the critical points of these three models. The statistical precision of the estimates is satisfactory for the modest amount of computer time spent

    Social Intelligence: Fact Or Artifact?

    Get PDF

    Lean Enterprises – A Systems Perspective

    Get PDF
    Becoming a “Lean Enterprise” is increasingly being recognized as an important strategy in achieving critical strategic goals such as responsiveness, cycle time and cost across all phases of the product life cycle. The concept of a lean enterprise is not new. Many books address lean enterprise topics. For example, The Machine That Changed the World, the book that introduced lean terminology, has a chapter on “Managing Lean Enterprises”. Despite having much written on this subject, lean enterprises are only starting to emerge in practice. Why has it taken so long to transform organizations to lean enterprises? Lean enterprises are complex, highly integrated systems comprised of processes, products, organizations, and information, with multifaceted interdependencies and interrelationships across their boundaries. Understanding, engineering, and managing these complex social, technical, and infrastructure processes are critical to becoming a lean enterprise
    corecore