208 research outputs found

    Effect of Oil-in-Water Emulsions on 5-Aminolevulinic Acid Uptake and Metabolism to PpIX in Cultured MCF-7 Cells

    Get PDF
    No Heading: Purpose.: To identify the optimal vehicle for fast and efficient cellular production of the photosensitizer, protoporphyrin IX (PpIX), upon administration of 5-aminolevulinic acid (ALA). Methods.: ALA in various oil/water o/w emulsions was applied to the human mammary epithelial cell line (MCF-7) cultured in microplates. Upon incubation for 1-4 h, the accumulated amount of PpIX was determined by fluorescence spectroscopy. Variables such as the pH and concentration of the emulsions, the temperature and duration of incubation were examined along with the importance of ALA concentration and the presence of endocytosis inhibitors. Results.: An increase in the amount of produced PpIX was observed with an increase in extracellular pH, incubation temperature, and ALA concentration. A saturable mechanism of PpIX accumulation was evident, mainly as a result of the uptake mechanism for ALA. Some of the o/w emulsions increased the amount of intracellular PpIX, and the results indicated that this was not due to an increased km of the extracellular ALA to intracellular PpIX conversion, but to the increased endocytotic uptake in the presence of the emulsions. In general, the increase in PpIX in the presence of emulsions relative to the control was more pronounced after 1 h as compared to after 2-4 h. Conclusions.: The formation of PpIX in MCF-7 cells exposed to ALA is improved by the presence of certain o/w emulsions, which could be explained by endocytosi

    Effect of cholesterol on the interaction between amphyphylic peptides and liposomes

    Get PDF
    With the rise of antibiotic resistance, antimicrobial peptides (AMPs) have been proposed as an alternative novel class of therapeutic agents. They are polycationic, with a net positive charge of more than +2, and they are characterized by amphipathic structures, with both a hydrophobic and a hydrophilic domain. These characteristics allow them to selectively bind to negatively charged lipids (largely present in bacteria, not in mammalian cells), via hydrophobic and electrostatic interactions. Moreover, mammalian cells are characterized by a high content of cholesterol. For this reason, here we present an experimental study on the effect of the presence of cholesterol on the capability of amphyphylic peptide Trasportant 10 (TP10) to interact with model membranes with selected composition. The study was performed by means of fluorescence spectroscopy and fluorescence confocal microscopy measurements also exploiting the advantages of phasor plot analysis of Fluorescence Lifetime Imaging (FLIM) measurements. Our results show that the presence of cholesterol inhibits TP-10 interaction with lipid vesicles, the extent of the observed effect being dependent on the cholesterol concentration in the membrane

    In vitro placental model optimization for nanoparticle transport studies

    Get PDF
    Advances in biomedical nanotechnology raise hopes in patient populations but may also raise questions regarding biodistribution and biocompatibility, especially during pregnancy. Special consideration must be given to the placenta as a biological barrier because a pregnant woman's exposure to nanoparticles could have significant effects on the fetus developing in the womb. Therefore, the purpose of this study is to optimize an in vitro model for characterizing the transport of nanoparticles across human placental trophoblast cells. The growth of BeWo (clone b30) human placental choriocarcinoma cells for nanoparticle transport studies was characterized in terms of optimized Transwell® insert type and pore size, the investigation of barrier properties by transmission electron microscopy, tight junction staining, transepithelial electrical resistance, and fluorescein sodium transport. Following the determination of nontoxic concentrations of fluorescent polystyrene nanoparticles, the cellular uptake and transport of 50 nm and 100 nm diameter particles was measured using the in vitro BeWo cell model. Particle size measurements, fluorescence readings, and confocal microscopy indicated both cellular uptake of the fluorescent polystyrene nanoparticles and the transcellular transport of these particles from the apical (maternal) to the basolateral (fetal) compartment. Over the course of 24 hours, the apparent permeability across BeWo cells grown on polycarbonate membranes (3.0 µm pore size) was four times higher for the 50 nm particles compared with the 100 nm particles. The BeWo cell line has been optimized and shown to be a valid in vitro model for studying the transplacental transport of nanoparticles. Fluorescent polystyrene nanoparticle transport was size-dependent, as smaller particles reached the basal (fetal) compartment at a higher rate
    • …
    corecore